二维前缀和模板题,坑点:坐标+1防止数组越界。范围变成(1,N+1)
#include <bits/stdc++.h>
using namespace std;
const int N = 5001;
int a[5010][5010];
int n, m, ans;
int main() {
memset(a, 0, sizeof(a));
cin >> n >> m;
for (int i = 1; i <= n; i ++) {
int x, y, v;
cin >> x >> y >> v;
a[x + 1][y + 1] += v;
}
for (int i = 1; i <= N; i ++)
for (int j = 1; j <= N; j ++)
a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
for (int i = m; i <= N; i ++) {
for (int j = m; j <= N; j ++) {
int val;
val = a[i][j] - a[i - m][j] - a[i][j - m] + a[i - m][j - m];
ans = max(ans, val);
}
}
cout << ans;
}
注意到n=120,数据很小,可以直接考虑稍微暴力的解法,枚举子矩阵的行数和列数,再枚举子矩阵右下角的坐标,复杂度n的4次方。
#include <bits/stdc++.h>
using namespace std;
int n, a[130][130];
int main() {
cin >> n;
for (int i = 1; i <= n; i ++) {
for (int j = 1; j <= n; j ++) {
cin >> a[i][j];
a[i][j] += a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];
}
}
int ans = -0x3f3f3f3f;
for (int r = 1; r <= n; r ++) {//枚举子矩阵的行数
for (int c = 1; c <= n; c ++) {//列数
for (int i = r; i <= n; i ++) {
for (int j = c; j <= n; j ++) {
int val;
val = a[i][j] - a[i - r][j] - a[i][j - c] + a[i - r][j - c];
ans = max(ans, val);
}
}
}
}
cout << ans;
}