西交利物浦&港科最新!轨迹预测基座大模型综述

  • 论文链接:https://www.arxiv.org/abs/2509.10570

  • 作者单位:西交利物浦大学,澳门大学,利物浦大学,香港科技大学(广州)

摘要与引言

这篇综述探讨了将大语言模型(LLMs)和多模态大语言模型(MLLMs)等大型基础模型应用于自动驾驶轨迹预测的新范式 。这种方法通过整合语言和情境知识,使自动驾驶系统能更深入地理解复杂的交通场景,从而提升安全性和效率。文章回顾了从传统方法到由LFM引入的范式转变,涵盖了车辆和行人的预测任务、常用的评估指标和相关数据集 。它详细介绍了LLM的三种关键应用方法:轨迹-语言映射、多模态融合和基于约束的推理,这些方法显著提高了预测的可解释性和在长尾场景中的鲁棒性 。尽管LLM有诸多优势,但也面临计算延迟、数据稀缺和真实世界鲁棒性等挑战 。

图1展示了自动驾驶中“感知-预测-规划与控制”的闭环过程,突出了LFM如何帮助自动驾驶车辆预测其他交通参与者的轨迹 。
图2则以时间线形式展示了轨迹预测方法的演变,从基于物理模
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值