一文看懂多模态视觉-语言大模型的架构演进

作者 | Dreamweaver  编辑 | 具身智能之心

原文链接:https://zhuanlan.zhihu.com/p/693885420

点击下方卡片,关注“具身智能之心”公众号

本文只做学术分享,如有侵权,联系删文

本文回顾了多模态LLM (视觉-语言模型) 近一年来的模型架构演进,对其中有代表性的工作进行了精炼总结,截止2024.04,持续更新ing... 欢迎大家多多点赞、收藏、讨论

首先,推荐一篇启发我很多的综述和对应的项目地址(本文的封面图也来自该综述)

A Survey on Multimodal Large Language Models
arxiv.org/abs/2306.13549

Awesome-Multimodal-Large-Language-Models
github.com/BradyFU/Awesome-Multimodal-Large-Language-Models

这篇综述一张图总结了多模态LLM的典型架构:

198b872a8072da76af128be19c2ba7f1.png

BLIP

【2022.01发布】https://arxiv.org/abs/2201.12086

统一视觉-语言理解和生成,使用captioner+filter高效利用互联网有噪数据

d404030de871f6ef6312c40c1184f363.png

模型架构:

  • Image/text encoder: ITC loss对齐视觉和语言表征,基于ALBEF提出的momentum distillation

  • Image-grounded text encoder: ITM loss建模视觉-语言交互,区分positive/negative图文对,使用hard negative mining挖掘更高相似度的负例优化模型

  • Image-grounded text decoder: LM loss实现基于图像的文本解码,将双向self-attention替换为causal self-attention

8bb43d3ca1bf1aff8c7d95b5c6f5e050.png

BLIP的bootstrapping训练过程:

95b8cac700897ded0d20838b8826afda.png

BLIP-2

【2023.01发布】https://arxiv.org/abs/2301.12597

使用相对轻量的Q-Former连接视觉-语言模态,通过两阶段训练:第1阶段基于冻住的视觉编码器,第2阶段基于冻住的LLM

45a6994efd0a6ea67b1a7f2dd7d57cb7.png

第1阶段:同样优化ITC/ITM/LM loss,使用不同的self-attention mask,query和text端共享self-attention参数,使得可学习的query embedding提取与text语义最相关的视觉表征;使用BERT-base初始化,32个768维的query作为信息瓶颈

  • ITC:计算每个query与text的相似度,取最大的;使用batch内negatives,不再使用momentum queue

  • ITM:对每个query与text的分类logits取平均,使用hard negatives mining挖掘难负例

  • LM:text token和frozen image encoder不能直接交互,要求query能提取有益的视觉特征

6ead3f70f079ca14c72ed49664412005.png

第2阶段:可基于decoder-only/encoder-decoder LLM进行适配,FC层对齐维度

af66c38094d89b36e133bf1bc6f60411.png

LLaVA

【2023.04发布】https://arxiv.org/abs/2304.08485

  1. 使用仅文本模态的GPT-4生成视觉-语言指令遵循数据,用于微调多模态LLM

  • 使用图片的dense captions和bounding boxes作为prompt,可以生成对话、细节描述、复杂推理等指令

  1. CLIP ViT-L/14 + Vicuna,使用简单的线性层进行映射

  • 更复杂的:Flamingo中gated cross-attention,BLIP-2中的Q-former

66fd241a8abf23a355a1034febb5b827.pngb3b50a3156d6f79c200ea292fe55b68c.png
  1. LLaVA模型的两阶段训练

  • stage1. 预训练特征对齐:冻住vision encoder和LLM,只训练projection,学习一个兼容的visual tokenizer

  • stage2. 端到端微调:冻住vision encoder,在单轮/多轮对话数据上微调projection和LLM

MiniGPT-4

【2023.04发布】https://arxiv.org/abs/2304.10592

stage1. 预训练:使用image-text pair微调linear projection layer,vision encoder和LLM保持冻住

stage2. 指令微调:指令格式为:###Human:###Assistant:

2adaf296ecf8418ada2f6284e8163ad6.png

InstructBLIP

【2023.05发布】https://arxiv.org/abs/2305.06500

stage1. 预训练:BLIP-2(使用image-text pairs进行两阶段训练)

stage2. 指令微调:只微调instruction-aware Q-former,冻住vision encoder和LLM

支持FlanT5(encoder-decoder)和Vicuna(decoder-only)

d7629e0cbee7fcade076337669de8763.png

Qwen-VL

【2023.08发布】https://arxiv.org/abs/2308.12966

支持中英双语、多图像输入

Qwen-7B + OpenCLIP ViT-bigG,输入图像直接resize到视觉编码器输入

位置感知的VL adapter:使用基于Q-former的单层的cross-attention,将图像特征维度压缩到256,在query-key pairs中引入2D绝对位置编码增强位置信息

图像输入:256-dim图像特征

bounding box输入输出:(X_topleft, Y_topleft), (X_bottomright, Y_bottomright),…标记box所指内容

三阶段训练:

stage1. 预训练:基于大规模、弱标注、网络爬取的图像-文本对,输入分辨率224x224,冻住LLM,训练ViT和Q-former,主要目的是模态对齐

stage2. 多任务预训练:基于7种下游视觉-语言理解任务的高质量、细粒度标注数据训练,输入分辨率448x448,图像/文本数据交错,训练整个模型

stage3. 指令微调:提升指令遵循和多轮对话能力,冻住ViT,训练LLM和Q-former

26fbedac0c7b2d16b9b3dc824307aa67.png

Qwen-VL-Plus和Qwen-VL-Max提升了视觉推理能力、图像细节的识别/提取/分析能力(尤其是文本导向的任务)、支持高分辨率和极端纵横比的输入图像;在部分中文场景超过了GPT-4V和Gemini

InternLM-XComposer

【2023.09发布】https://arxiv.org/abs/2309.15112

交错图文构成:自动在输出文本中插入合适的图片

EVA-CLIP ViT + InternLM-7B + Q-former (将图像特征压缩到64个embedding)

两阶段训练:

stage1. 预训练:冻住ViT,训练LLM和Q-former

stage2. 监督微调:包括多任务训练和指令微调,冻住ViT和LLM,训练Q-former,对LLM进行LoRA微调,增强指令遵循和图文混排能力

9223a943a8e1e06b5618d5e3fa0d74a7.png

Fuyu-8B

【2023.10发布】https://huggingface.co/adept/fuyu-8b

模型架构和训练过程简单,易于scaling;支持任意图像分辨率;推理速度快

decoder-only的transformer,没有专门的图像编码器;image patch直接线性映射到transformer第一层

b60e5761c20d14088ed188bbda512b7e.png

LLaVA-1.5

【2023.10发布】https://arxiv.org/abs/2310.03744

仍使用MLP作为模态连接,突出了训练的数据高效性

a9292435bc59657fc56ca55122b29073.png

CogVLM

【2023.11发布】https://arxiv.org/abs/2311.03079

深度视觉-语言模态融合,而不影响LLM原有的语言能力:冻住LLM和ViT,在attention和FFN层训练一份视觉专家模块

1e68db47135a032d707497bc71a6c05b.png

CogAgent

【2023.12发布】https://arxiv.org/abs/2312.08914

针对GUI场景的多模态理解和导引,使用高分辨率-低分辨率双编码器,支持1120x1120的屏幕输入

高分辨率分支使用更轻量的ViT,基于cross-attention将高分辨率图像特征与LLM每层进行融合

24d95268fd981e08dbbb1730ad23097b.png

VILA

【2023.12发布】https://arxiv.org/abs/2312.07533

探索了视觉-语言模型训练的设计选择:

  1. 预训练阶段冻住LLM虽然能取得较好的zero-shot性能,但上下文学习能力依赖对LLM的微调

  2. 图文交错的预训练数据是有益的,只用图文数据对效果不够好

  3. 将纯文本的指令微调数据加入SFT阶段有助于缓解纯文本任务的能力退化,同时也能够增强视觉-语言任务的准确性

2d8b1910890cfe575626d913b6c3ffee.png

LLaVA-Next

【2024.01发布】https://llava-vl.github.io/blog/2024-01-30-llava-next/

相对于LLaVA-1.5,保持了极简的设计和数据高效性:

  1. 提高了输入图像的分辨率 (4x),支持3种纵横比:672x672, 336x1344, 1344x336

  2. 更好的视觉推理和OCR能力:更好的指令微调数据配比

  3. 更好的多场景视觉对话:更好的世界知识和逻辑推理

  4. 更高效的部署和推理:SGLang

动态高分辨率:视觉编码器支持336x336的图像输入,对于672x672的图像,按照{2,2}的grid split成4个图像patch过encoder,downsample到336x336也过encoder,特征拼接作为visual tokens输入到LLM中

57ec7600a68953975071c6df88151998.png

收集高质量用户数据,包括真实场景中反映用户更广泛意图的指令数据,利用GPT-4V进行数据构造

多模态文档/图表数据,增强文档OCR和图表理解能力

5bd51ecd86974bf55acf4e512af558b1.png

InternLM-XComposer2

【2024.01发布】https://arxiv.org/abs/2401.16420

提出了新的模态对齐方法partial LoRA:只在image token上添加LoRA参数,保证预训练语言知识的完整性,这样一个更轻量的视觉编码器同样有效

OpenAI CLIP ViT-L/14 + InternLM2-7B + partial LoRA (rank=256)

5cc0b419201c51cdb5d7eb0c2eea53d3.pngd021f5537ff5f59be9b572affd8601af.png

两阶段训练:

stage1. 预训练:冻住LLM,微调ViT和partial LoRA模块,包括通用语义对齐(理解图像基本内容)、世界知识对齐(进行复杂的知识推理)、视觉能力增强(OCR、物体定位、图表理解)

stage2. 监督微调:微调整个模型,包括多任务训练、自由形式图文排布

InternLM-XComposer2-4KHD

2024.04发布了4KHD版本:https://arxiv.org/abs/2404.06512

支持动态分辨率(336px → 4K (3840x1600)):改进了patch division范式,保持训练图像原有的纵横比,自动变化patch数目,基于336x336的ViT配置layout

动态图像划分:将输入图像resize and pad到336的整数倍宽高

结合图像的global和local视角:global视角由输入直接resize到336x336,使用sep token分隔两种视角的token

图像2D结构的换行符:可学习的\n token分隔图像token行

5f60fdad08c434cfa270b158d10a3045.png

Mini-Gemini

【2024.03发布】https://arxiv.org/abs/2403.18814

使用双视觉编码器提取低分辨率embedding作为query,高分辨率特征区域作为key/value,两者之间做cross-attention,输出挖掘的tokens作为prompt前缀,输入到LLM做推理,外接图像解码器生成图像(SDXL)

f934c8a355bc768e76a6401615199826.png

扫码添加助理微信邀请入【具身智能】群,备注:学校/公司+方向+昵称(快速入群方式)

ade6686f85166254c3af05961ab8b30e.jpeg

【自动驾驶之心】全平台矩阵

e58e23b27dd96ef81afb38a241a455f5.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值