Ubuntu16.04+cuda9.0+cudnn7.4.1+opencv3.4.0+anaconda3(python3.6)+caffe
0.基本环境配置
操作系统:Ubuntu16.04
英伟达驱动:nvidia384.130(安装)
CUDA版本:cuda9.0(安装)
cnDNN版本:cudnn7.4.1(安装)
OpenCV版本:opencv3.4.0(安装)
Anaconda版本:anaconda3(python3.6)(安装)
安装cuda要注意nvidia版本!


1.基本依赖库安装
终端输入:
sudo apt install caffe-cuda
安装依赖:
-
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler -
sudo apt-get install --no-install-recommends libboost-all-dev -
sudo apt-get install libatlas-base-dev -
sudo apt-get install libhdf5-serial-dev -
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
2.配置caffe
2.1clone caffe源码
本文caffe安装目录为:
usr/local/
cd 进入安装目录并git:
git clone https://github.com/BVLC/caffe.git
2.2配置Makefile.config文件
进入caffe文件夹,复制更改Makefile.config文件:
-
cd /usr/local/caffe -
sudo cp Makefile.config.example Makefile.config -
sudo gedit Makefile.config
更改配置如下:
-
## Refer to http://caffe.berkeleyvision.org/installation.html -
# Contributions simplifying and improving our build system are welcome! -
# cuDNN acceleration switch (uncomment to build with cuDNN). -
USE_CUDNN := 1 -
# CPU-only switch (uncomment to build without GPU support). -
# CPU_ONLY := 1 -
# uncomment to disable IO dependencies and corresponding data layers -
# USE_OPENCV := 0 -
# USE_LEVELDB := 0 -
# USE_LMDB := 0 -
# This code is taken from https://github.com/sh1r0/caffe-android-lib -
# USE_HDF5 := 0 -
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) -
# You should not set this flag if you will be reading LMDBs with any -
# possibility of simultaneous read and write -
# ALLOW_LMDB_NOLOCK := 1 -
# Uncomment if you're using OpenCV 3 -
OPENCV_VERSION := 3 -
# To customize your choice of compiler, uncomment and set the following. -
# N.B. the default for Linux is g++ and the default for OSX is clang++ -
# CUSTOM_CXX := g++ -
# CUDA directory contains bin/ and lib/ directories that we need. -
CUDA_DIR := /usr/local/cuda -
# On Ubuntu 14.04, if cuda tools are installed via -
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead: -
# CUDA_DIR := /usr -
# CUDA architecture setting: going with all of them. -
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. -
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. -
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility. -
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ -
-gencode arch=compute_35,code=sm_35 \ -
-gencode arch=compute_50,code=sm_50 \ -
-gencode arch=compute_52,code=sm_52 \ -
-gencode arch=compute_60,code=sm_60 \ -
-gencode arch=compute_61,code=sm_61 \ -
-gencode arch=compute_61,code=compute_61 -
# BLAS choice: -
# atlas for ATLAS (default) -
# mkl for MKL -
# open for OpenBlas -
# BLAS := atlas -
BLAS := open -
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories. -
# Leave commented to accept the defaults for your choice of BLAS -
# (which should work)! -
# BLAS_INCLUDE := /path/to/your/blas -
# BLAS_LIB := /path/to/your/blas -
# Homebrew puts openblas in a directory that is not on the standard search path -
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include -
# BLAS_LIB := $(shell brew --prefix openblas)/lib -
# This is required only if you will compile the matlab interface. -
# MATLAB directory should contain the mex binary in /bin. -
# MATLAB_DIR := /usr/local -
# MATLAB_DIR := /Applications/MATLAB_R2012b.app -
# NOTE: this is required only if you will compile the python interface. -
# We need to be able to find Python.h and numpy/arrayobject.h. -
# PYTHON_INCLUDE := /usr/include/python2.7 \ -
# /usr/lib/python2.7/dist-packages/numpy/core/include -
# Anaconda Python distribution is quite popular. Include path: -
# Verify anaconda location, sometimes it's in root. -
ANACONDA_HOME := $(HOME)/anaconda3 -
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ -
$(ANACONDA_HOME)/include/python3.6m \ -
$(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include \ -
# Uncomment to use Python 3 (default is Python 2) -
PYTHON_LIBRARIES := boost_python-py35 python3.6m -
#这一段可删除#(注意:check the boost_python version library in /usr/lib/x86_64-linux-gnu/. For example, if there exists libboost_python-py34.so in this directory, uncomment and modify the line of PYTHON_LIBRARIES as PYTHON_LIBRARIES := boost_python-py34 python3.6m,本文用boost_python-py35) -
# PYTHON_INCLUDE := /usr/include/python3.5m \ -
# /usr/lib/python3.5/dist-packages/numpy/core/include -
# We need to be able to find libpythonX.X.so or .dylib. -
# PYTHON_LIB := /usr/lib -
PYTHON_LIB := $(ANACONDA_HOME)/lib -
# Homebrew installs numpy in a non standard path (keg only) -
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include -
# PYTHON_LIB += $(shell brew --prefix numpy)/lib -
# Uncomment to support layers written in Python (will link against Python libs) -
WITH_PYTHON_LAYER := 1 -
# Whatever else you find you need goes here. -
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ -
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial -
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies -
# INCLUDE_DIRS += $(shell brew --prefix)/include -
# LIBRARY_DIRS += $(shell brew --prefix)/lib -
# NCCL acceleration switch (uncomment to build with NCCL) -
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) -
# USE_NCCL := 1 -
# Uncomment to use `pkg-config` to specify OpenCV library paths. -
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) -
# USE_PKG_CONFIG := 1 -
# N.B. both build and distribute dirs are cleared on `make clean` -
BUILD_DIR := build -
DISTRIBUTE_DIR := distribute -
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 -
# DEBUG := 1 -
# The ID of the GPU that 'make runtest' will use to run unit tests. -
TEST_GPUID := 0 -
# enable pretty build (comment to see full commands) -
Q ?= @ -
LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda3/lib
2.3. 配置Makefile文件
进入caffe文件夹中,并执行。终端输入:
-
cd /usr/local/caffe -
sudo gedit Makefile
修改如下:(可以ctrl+f进行搜索)
-
PYTHON_LIBRARIES ?= boost_python python2.7 -
修改为: -
PYTHON_LIBRARIES ?= boost_python-py35 python3.6m
-
NVCCFLAGS +=-ccbin=$(CXX) -Xcompiler-fPIC $(COMMON_FLAGS) -
修改为: -
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)
-
将: -
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5 -
改为: -
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
2.4编译
cd到caffe目录,并编译
-
cd /usr/local/caffe -
sudo make clean -
sudo make all -j12
在终端执行:
sudo make test -j12
成功之后输入:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:{path to your anaconda}/anaconda3/lib:{path to your anaconda}/anaconda3/pkgs/python-3.6.1-2/lib
运行测试:
sudo make runtest -j12
成功:

成功之后会显示PASSED,继续进入caffe下python目录,修改requirements.txt里为python-dateutil>=2.0:
-
cd /usr/local/caffe/python -
sudo gedit requirements.txt
修改成功后在当前python目录执行执行:
for req in $(cat requirements.txt); do pip install $req; done
最后对pycaffe配置:
-
cd /usr/local/caffe -
sudo make pycaffe
成功:

3.测试caffe
3.1更改环境变量
sudo gedit /etc/profile
加入:export PYTHONPATH={path to your caffe}/caffe/python/:$PYTHONPATH
本文中为:export PYTHONPATH=/usr/local/caffe/python/:$PYTHONPATH
source一下使之生效:
source /etc/profile
3.2测试
-
python -
import caffe
成功:

4.Error
1.cannot find -lboost_python-py36
按照2.2和2.3的配置文件进行修改,ubuntu自带的boost_1.58.0没有对python3.6m进行编译,所以在/usr/lib/x86_64-linux-gnu/. 不存在 libboost_python-py36.so ,只能将Makefile.config中改为:PYTHON_LIBRARIES := boost_python-py35 python3.6m
2.Warning!***HDF5 library version mismatched error *** python pandas...
系统的HDF5与Anaconda中冲突,解决方法:
conda install -c anaconda hdf5=1.8.15
3.略...
本文介绍如何在Ubuntu16.04上配置Caffe深度学习框架,包括安装基本环境、依赖库,配置及编译Caffe等步骤。特别针对CUDA9.0、cuDNN7.4.1和OpenCV3.4.0版本进行了详细说明。
2204

被折叠的 条评论
为什么被折叠?



