数据结构-十大经典排序算法之归并排序

本文深入讲解归并排序算法,包括其图示过程、排序流程、合并数组的具体操作,并通过动图进行直观演示。同时提供了完整的代码实现,分析了归并排序的时间复杂度为O(nlogn)、空间复杂度为O(N),并指出其稳定性特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图示过程

排序流程

在这里插入图片描述

合并数组

在这里插入图片描述

动图演示

在这里插入图片描述

代码演示

public static void mergeSort(int[] arr) {
    sort(arr, 0, arr.length - 1);
}

public static void sort(int[] arr, int L, int R) {
    if(L == R) {
        return;
    }
    int mid = L + ((R - L) >> 1);
    sort(arr, L, mid);
    sort(arr, mid + 1, R);
    merge(arr, L, mid, R);
}

public static void merge(int[] arr, int L, int mid, int R) {
    int[] temp = new int[R - L + 1];
    int i = 0;
    int p1 = L;
    int p2 = mid + 1;
    // 比较左右两部分的元素,哪个小,把那个元素填入temp中
    while(p1 <= mid && p2 <= R) {
        temp[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
    }
    // 上面的循环退出后,把剩余的元素依次填入到temp中
    // 以下两个while只有一个会执行
    while(p1 <= mid) {
        temp[i++] = arr[p1++];
    }
    while(p2 <= R) {
        temp[i++] = arr[p2++];
    }
    // 把最终的排序的结果复制给原数组
    for(i = 0; i < temp.length; i++) {
        arr[L + i] = temp[i];
    }
}

复杂度分析

时间复杂度

O(nlogn)

空间复杂度

O(N),归并排序需要一个与原数组相同长度的数组做辅助来排序

稳定性

归并排序是稳定的排序算法,temp[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];这行代码可以保证当左右两部分的值相等的时候,先复制左边的值,这样可以保证值相等的时候两个元素的相对位置不变

转载自:https://www.jianshu.com/p/33cffa1ce613

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值