3530: [Sdoi2014]数数

本文介绍了一道名为“数数”的SOI2014竞赛题目,该题要求计算不超过给定数值N的所有幸运数的个数,并提供了一种使用AC自动机进行高效求解的方法。

3530: [Sdoi2014]数数

Time Limit: 10 Sec   Memory Limit: 512 MB
Submit: 723   Solved: 385
[ Submit][ Status][ Discuss]

Description

我们称一个正整数N是幸运数,当且仅当它的十进制表示中不包含数字串集合S中任意一个元素作为其子串。例如当S=(22,333,0233)时,233是幸运数,2333、20233、3223不是幸运数。
    给定N和S,计算不大于N的幸运数个数。

Input


    输入的第一行包含整数N。
    接下来一行一个整数M,表示S中元素的数量。
    接下来M行,每行一个数字串,表示S中的一个元素。

Output

    输出一行一个整数,表示答案模109+7的值。

Sample Input

20
3
2
3
14

Sample Output

14

HINT

 下表中l表示N的长度,L表示S中所有串长度之和。


1 < =l < =1200 , 1 < =M < =100 ,1 < =L < =1500

Source

[ Submit][ Status][ Discuss]

先构造一个AC自动机
f[i][j]:放了i位数字,现在在AC自动机的第j位,合法方案数
转移方程显然

但是这里要注意一些事情
如果我们设f[0][0] = 1为初值
搞到最后一定会把0这个东西算下去
ans - 1可以解决
但是这样又会出现一些奇怪的问题
f[k][0]这个状态一直都把含有一堆前导0的这个状态算着
如果我们的一堆子串中有一个含有前导0
那么下一次转移直接贴着这条边走过去了
就是说我们统计了一个含有前导0的数??????
所以,,,把第一位单独提出处理
以及,单独处理要新起一个头的情况
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<bitset>
#include<algorithm>
#include<cstring>
#include<map>
#include<stack>
#include<set>
#include<cmath>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;

const int maxn = 2E3 + 10;
const int mo = 1E9 + 7;

int n,m,cnt,ch[maxn][10],fail[maxn],f[maxn][maxn];
bool Mark[maxn],Max[maxn][maxn];
char num[maxn],Num[maxn];

queue <int> Q;

int main()
{
	#ifdef DMC
		freopen("DMC.txt","r",stdin);
	#endif
	
	scanf("%s",Num + 1);
	n = strlen(Num + 1);
	cin >> m;
	for (int i = 1; i <= m; i++) {
		scanf("%s",num + 1);
		int len = strlen(num + 1);
		int now = 0;
		for (int j = 1; j <= len; j++) {
			int Nex = num[j] - '0';
			if (!ch[now][Nex]) ch[now][Nex] = ++cnt;
			now = ch[now][Nex];
		}
		Mark[now] = 1;
	}
	
	for (int i = 0; i < 10; i++)
		if (ch[0][i])
			fail[ch[0][i]] = 0,Q.push(ch[0][i]);
	while (!Q.empty()) {
		int k = Q.front(); Q.pop();
		for (int i = 0; i < 10; i++) {
			int u = ch[k][i];
			if (!u) {
				ch[k][i] = ch[fail[k]][i];
				continue;
			}
			int v = fail[k];
			fail[u] = ch[v][i];
			Q.push(u);
		}
	}
	
	for (int Nex = 1; Nex < 10; Nex++) {
		if (Mark[ch[0][Nex]]) continue;
		++f[1][ch[0][Nex]];
		if (Nex > Num[1] - '0')
			--f[1][ch[0][Nex]];
		if (Nex == Num[1] - '0')
			Max[1][ch[0][Nex]] = 1;
	}
	
	for (int i = 1; i < n; i++) {
		for (int j = 0; j <= cnt; j++) {
			if (!f[i][j]) continue;
			for (int Nex = 0; Nex < 10; Nex++) {
				if (Mark[ch[j][Nex]]) continue;
				f[i+1][ch[j][Nex]] += f[i][j];
				f[i+1][ch[j][Nex]] %= mo;
				if (Max[i][j] && Nex > Num[i+1] - '0') {
					--f[i+1][ch[j][Nex]];
					f[i+1][ch[j][Nex]] = (f[i+1][ch[j][Nex]] + mo) % mo;
				}
				if (Max[i][j] && Nex == Num[i+1] - '0')
					Max[i+1][ch[j][Nex]] = 1;
			}
		}
		for (int Nex = 1; Nex < 10; Nex++) {
			if (Mark[ch[0][Nex]]) continue;
			++f[i+1][ch[0][Nex]];
			f[i+1][ch[0][Nex]] %= mo;
		}
	}
	int Ans = 0;
	for (int i = 0; i <= cnt; i++)
		Ans += f[n][i],Ans %= mo;
	cout << Ans;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值