-
Batch Normalization 可以
改善梯度消失/爆炸问题
:前面层的梯度经过多次传递后会变得非常小(大),从而导致网络收敛速度慢(不收敛),应用 BN 可缓解加速网络收敛
:BN 使得每个神经元的输入分布更加稳定减少过拟合
:BN 可减少由于数据分布的变化导致的模型性能下降提高模型泛化能力
:BN 使得模型对输入的微小变化更加稳定缓解超参敏感
:对于 learning rate 等超参数敏感性降低- …
-
Batch Normalization(BN):使 feature map 满足均值为 0,方差为 1 的分布规律
- 如果batch size为m,则在前向传播过程中,网络中每个节点都有m个输出,所谓的Batch Normalization,就是对该层每个节点的这m个输出进行归一化再输出
- 数学表达:每个 channel 下统计一个对应的均值和方差
x norm = x − E [ x ] V a r [ x ] + ϵ ∗ γ + β x_{\text{norm}} = \frac{x - \mathbb{E}[x]}{\sqrt{Var[x]+\epsilon}} * \gamma + \beta xnorm=
PyTorch -- Batch Normalization(BN) 快速实践
于 2024-06-15 22:54:16 首次发布