使用ControlNet生成视频(Pose2Pose)

ControlNet是一种用于指导图像生成的神经网络,通过14种模型控制扩散过程,解决空间一致性问题。文章介绍了模型结构、运行环境搭建以及各模型在边缘检测、深度图等领域的应用。

目录

ControlNet 介绍

ControlNet 14种模型分别是用来做什么的

ControlNet 运行环境搭建

用到的相关模型地址


ControlNet 介绍

ControlNet 是一种用于控制扩散模型的神经网络结构,可以通过添加额外的条件来实现对图像生成的控制¹²。它通过将神经网络块的权重复制到一个“锁定”的副本和一个“可训练”的副本来实现这一点。 “可训练”的副本学习你的条件,而“锁定”的副本保留你的模型。这样,使用小规模的图像对数据集进行训练不会破坏生产就绪的扩散模型。

ControlNet 的创新之处在于它解决了空间一致性的问题。以前,没有有效的方法可以告诉 AI 模型保留输入图像的哪些部分,而 ControlNet 通过引入一种方法来实现这一点,使得稳定扩散模型能够使用额外的输入条件来指导模型的行为。

ControlNet 可以通过重复上述简单的结构 14 次来控制稳定扩散。这样,ControlNet 就可以重用 SD 编码器作为一个深层、强大、稳健和强大的骨干网络,来学习多样化的控制¹。

ControlNet 可以使用各种技术来对输入图像和提示进行条件化,例如姿态、边缘检测、深度图等。它可以让我们通过不同的方式来控制最终的图像生成,例如涂鸦、交互式分割、内容混合等。

ControlNet 14种模型分别是用来做什么的

  1. Canny: 用于生成边缘检测图像,可以用于AI绘画或者风格迁移。
  2. Depth: 用于生成深度图像,可以用于3D重建或者虚拟现实。
  3. Openpose: 用于生成人体姿态估计图像,可以用于动作识别或者动画制作。
  4. Style: 用于生成不同风格的图像,可以用于艺术创作或者滤镜效果。
  5. MLSD: 用于生成直线检测图像,可以用于几何变换或者透视校正。
  6. Normal: 用于生成法线图像,可以用于光照模拟或者材质编辑。
  7. Seg: 用于生成分割图像,可以用于物体识别或者背景替换。
  8. Inpaint: 用于生成修复图像,可以用于去除水印或者填补空缺。
  9. Lineart: 用于生成线稿图像,可以用于漫画制作或者素描练习。
  10. Lineart_anime: 用于生成动漫风格的线稿图像,可以用于二次元创作或者上色。
  11. Scribble: 用于生成涂鸦图像,可以用于草图设计或者儿童游戏。
  12. Softedge: 用于生成软边缘图像,可以用于模糊效果或者边缘检测。
  13. Shuffle: 用于生成随机排列的图像,可以用于拼图游戏或者视觉混乱。
  14. IP2P: 用于生成图片到图片的转换,可以用于风格迁移或者内容变换。

ControlNet 运行环境搭建

  • 克隆项目
    git clone --recursive https:\\github.com\lllyasviel/ControlNet-v1-1-nightly
  • 创建虚拟环境
cd ControlNet-v1-1-nightly
conda env create -f=environment.yml
  • 试运行depth模型
    首先去huggingface下载,control_v11flp_sd15_depth.pth模型和v1-5-pruned.ckpt两个模型放置在models目录下,运行代码
python gradio
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

telllong

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值