【hdu2899】Strange fuction——三分

本文介绍了一种使用三分枚举算法解决给定高次函数在特定区间内的最小值问题的方法,详细解释了算法原理,并通过实例展示了如何应用此算法求解实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

Strange fuction

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5360    Accepted Submission(s): 3832


Problem Description
Now, here is a fuction:
  F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100)
Can you find the minimum value when x is between 0 and 100.
 

Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has only one real numbers Y.(0 < Y <1e10)
 

Output
Just the minimum value (accurate up to 4 decimal places),when x is between 0 and 100.
 

Sample Input
2 100 200
 

Sample Output
-74.4291 -178.8534
 

Author
Redow

描述:给定含参数的高次函数,求最小值

题解:单峰函数的最值问题一般用三分枚举就好了

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const double eps = 1e-8;
double f(double x, double y)
{
	return 6.0 * pow(x, 7) + 8 * pow(x, 6) + 7 * pow(x, 3) + 5 * pow(x, 2) - y * x;
	// F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100)
}
int main()
{
	//freopen("input.txt", "r", stdin);
	int T;
	scanf("%d", &T);
	while (T--)
	{
		double y;
		scanf("%lf", &y);
		double l = 0.0;
		double r = 100.0;
		while (r - l > eps)
		{
			double mid1 = (r + l) / 2;
			double mid2 = (r + mid1) / 2;
			if (f(mid1, y) > f(mid2, y))
				l = mid1;
			else
				r = mid2;
		}
		printf("%.4lf\n", f(r,y));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值