非极大抑制(Non-maximum suppression)python代码实现

非极大值抑制(NMS)用于去除物体检测中的冗余矩形框。算法步骤包括按概率排序矩形框,然后比较并丢弃与最高概率框重叠度超过阈值的框,直至所有保留的框满足条件。该过程有助于精确定位物体。

定位一个物体,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制:先假设有6个矩形框,根据分类器类别分类概率做排序,从大到小分别属于物体的概率分别为A、B、C、D、E、F。

(1)从最大概率矩形框F开始,分别判断B~F与A的重叠度IOU是否大于某个设定的阈值;

(2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框A,是我们保留下来的。

(3)从剩下的矩形框C、E、F中,选择概率最大的C,然后判断C与E、F的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记C是我们保留下来的第二个矩形框

就这样一直重复,找到所有被保留下来的矩形框。
 

# import the necessary packages
import numpy as np


#  Felzenszwalb et al.
def non_max_suppression_slow(boxes, thresh):
    # if there are no boxes, return an empty list
    if len(boxes) == 0:
        return []

    # initialize the list of picked indexes
    pick = []

    # grab the coordinates of the bounding boxes
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    scores = boxes[:, 4]

    # compute the area of the bounding boxes and sort the bounding
    # boxes by the bottom-right y-coordi
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值