前言
SAM模型主要由三部分组成,本文旨在结合代码的方式对其中mask decoder进行详细的描述与总结,不足之处还望多多指教
mask decoder模块可以高效的将image embeddings与prompt embeddings映射到一个output mask中。为了结合image embeddings与prompt embeddings 这两个输入, 受Transformer模型的启发,作者修改了transformer中标准的Transformer Decoder作为本文所要介绍的Mask Decoder。
Mask Decoder定义
可以结合论文中该图看下列代码:
def __init__(
self,
*,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
) -> None:
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
# ---upscaled---
# ---四倍上采样---
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
activation(),
)
# ---upscaled end---
# ---MLP---
# ---对应mask数量的mlp---
self.output_hypernetworks_mlps = nn.ModuleList(
[
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
for i in range(self.num_mask_tokens)
]
)
# ---对应mask数量的mlp end---
# ---对应iou的mlp--
self.iou_prediction_head = MLP(
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
)
# ---对应iou的mlp end--
# ---MLP end---
先看传入的参数,如下:
transformer dim:表示transformer channel的维度。
transformer:表示传入的transformer模型。
num_multimask_outputs:表示mask decoder输出的mask个数(用于消除歧义), SAM原文中默认值为3。
activation:表示mask decoder 上采样过程中使用的激活函数。
iou_head_depth:表示用于预测mask的IoU质量指标时,所使用MLP层的深度。
iou_head_hidden_dim: 表示用于预测mask的IoU质量指标时,所使用MLP层中隐藏层的维度。
在下面代码中,由于在该阶段引入了一个额外的iou_token用于计算所预测mask的质量,因此要在该处+1。
self.num_mask_tokens = num_multimask_outputs + 1
Mask Decoder前向传播
def forward(
self,
image_embeddings: torch.Tensor, # image encoder 输出的image embedding
image_pe: torch.Tensor, # image的position embedding
sparse_prompt_embeddings: torch.Tensor, # prompt encoder输出的sparse prompt
dense_prompt_embeddings: torch.Tensor, # prompt encoder 输出的dense prompt
multimask_output: bool, # 多类别输出,具有模糊识别的能力
) -> Tuple[torch.Tensor, torch.Tensor]:
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# 根据multimask_output的bool值来对masks以及iou_pred进行选择性的切片
if multimask_output:
mask_slice = slice(1, None) # 为真时, 切片选择从第一个元素到最后一个
else:
mask_slice = slice(0, 1) # 为假时,只选择第一个切片
masks = masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
# 返回mask 以及 iou的预测分数
return masks, iou_pred
Mask Decoder中predict_masks
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # 对应 output_tokens + prompt tokens
# Expand per-image data in batch direction to be per-mask
# 扩展image_embeddings的B维度,因为boxes标记分割时,n个box时batchsize=batchsize*n
if image_embeddings.shape[0] != tokens.shape[0]:
# torch.repeat_interleave() 沿着指定的维度重复张量的元素
# image_embeddings 相当于待重复的张量元素
# tokens.shape[0] 相当于重复次数
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
else:
src = image_embeddings
src = src + dense_prompt_embeddings # 对应 image embedding + dense_prompt_embeddings(mask)
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
# hs代表transformer的输出隐藏状态 , 而src代表transformer的输入
hs, src = self.transformer(src, pos_src, tokens)
# [hs]是Transformer的输出,其中第一个维度表示batch中的不同样本,第二个维度表示token的序列,第三个维度表示token的特征维度。
# 通过`hs[:, 0, :]`可以获取第一个token对应的输出,即`iou_token_out`;
# 通过`hs[:, 1 : (1 + self.num_mask_tokens), :]`可以获取接下来的`num_mask_tokens`个token对应的输出,即`mask_tokens_out`。
# 这样的切片操作可以有效地提取出不同类型的token对应的输出。
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding = self.output_upscaling(src)
# 用于存储每个mask token 对应的经过 MLP 处理后的输出。这些处理后的输出将被用于生成最终的预测 masks。
hyper_in_list: List[torch.Tensor] = []
# ---MLP---
for i in range(self.num_mask_tokens):
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
# 将列表 hyper_in_list 中的张量沿着指定维度进行堆叠,生成一个新的张量 hyper_in
hyper_in = torch.stack(hyper_in_list, dim=1)
# ---MLP End---
b, c, h, w = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
# ---MLP---
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
# ---MLP End---
return masks, iou_pred
该代码第一部分 Concatenate output tokens的实现原理即为, output_tokens + prompt_tokens的结合。这一部分的理解可以参考该博主的图片。【图像分割】【深度学习】SAM官方Pytorch代码-Mask decoder模块MaskDeco网络解析_sam decoder-优快云博客
Transformer
Transformer数据流如图所示:从底部向上看我们发现, output tokens与prompt tokens先流入一个self-attention, 然后在从 token到 image 以及 image 到 token都采用corss-attention机制。在第一个Cross attention机制中(token to image), toke当作q,image embedding当作k与v。在第二个Cross attention中(image to token), image当作q, token充当k与v。【流程见TwoWayAttentionBlock代码】
class TwoWayTransformer(nn.Module):
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2, # 下采样
) -> None:
"""
A transformer decoder 尝试对一个输入图片使用带有位置embedding的查询
由多个transformer block组成, 每个block包含两个attention模块.
输入是图像的embedding、图像的position embedding和 点的embedding,
输出是处理后的点的embedding和处理后的图像的embedding。
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0), # 在第一个循环中 i=0, 说明在TwoWayAttentionBlock前向传播过程中第一次进self attn
)
)
self.final_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor, # 传入的是token = output_tokens + prompt_tokens
) -> Tuple[Tensor, Tensor]:
"""
前向传播过程:
(1) 将图像的embedding和position embedding 分别经过一个线性层,
得到image_embedding 和 image_pe。
(2) 将点嵌入的embedding经过一个线性层,得到point_embedding。
(3) 对 image_embedding 和 point_embedding 进行 transformer block处理,
得到经过处理的 image_embedding 和 point_embedding。
(4) 对经过处理的 image_embedding 和 point_embedding 进行交叉注意力,
得到经过处理的 point_embedding 和 image_embedding。
Args:
image_embedding (torch.Tensor): 图像嵌入张量,形状为 B x embedding_dim x h x w。
image_pe (torch.Tensor): 图像的位置编码张量,与 image_embedding 具有相同的形状。
point_embedding (torch.Tensor): 查询点的嵌入张量,形状为 B x N_points x embedding_dim。
Returns:
Tuple[torch.Tensor, torch.Tensor]: 经过处理的 point_embedding 和 image_embedding。
"""
# Flatten image embedding to B x N_image_tokens x C
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1) # image embedding 对应的 position embedding
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding, # 第一次添加时, queries与query_pe相同
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
# # 最后一个cross attn Final attention layer from the points to the image
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
TwoWayAttentionBlock
class TwoWayAttentionBlock(nn.Module):
# TwoWayAttentionBlock = LayerNorm + Multi-Head Attention + MLP
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers:
(1) self-attention of sparse inputs,
(2) cross attention of sparse inputs to dense inputs,
(3) mlp block on sparse inputs,
(4) cross attention of dense inputs to sparse
inputs.
Arguments:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
) -> Tuple[Tensor, Tensor]:
# 第一个Self attention 模块。
# 第一轮本身queries==query_pe
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# 第一个 Cross attention block。 tokens attending to image embedding
# q, k, v不再是来源于同一个序列,而是多个序列. queries + query_pe充当q, k与v都由 keys提供
# tokens to image embedding意味着,将token作为q, image_embedding 作为 k与v
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# 第二个 Cross attention block。 image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
Attention
class Attention(nn.Module):
"""
一个允许下采样embedding size的attention层
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head C_per_head表示一个head中有多少个channel
def _recombine_heads(self, x: Tensor) -> Tensor:
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
out = self.out_proj(out)
return out