Think:
1知识点:数位DP
2题意:询问区间[1, n]内有多少个数的数位中含有49(eg:49,149,249,1491等)
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.
The input terminates by end of file marker.
Output
For each test case, output an integer indicating the final points of the power.
Sample Input
3
1
50
500
Sample Output
0
1
15
Hint
From 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499",
so the answer is 15.
以下为Accepted代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
int dig[24];/*数位分离*/
LL dp[24][2][14];
LL dfs(int pos/*当前数位*/, bool state/*状态是否满足*/, int pre/*前一位的值*/, bool is_max/*是否达到临界*/);
LL solve(LL n);/*求解区间[1, n]*/
int main(){
memset(dp, -1, sizeof(dp));
int T;
LL n;
scanf("%d", &T);
while(T--){
scanf("%lld", &n);
printf("%lld\n", solve(n));
}
return 0;
}
LL solve(LL x){
memset(dig, 0, sizeof(dig));
int pos = 0;
while(x){
dig[pos++] = x%10;
x /= 10;
}
return dfs(pos-1, 0, -1, 1);
}
LL dfs(int pos, bool state, int pre, bool is_max){
if(pos == -1)
return state;/*返回true表示当前状态满足条件进而累加,返回false表示当前状态不满足条件*/
if(!is_max && dp[pos][state][pre] != -1)
return dp[pos][state][pre];
int up_top = 9;
if(is_max)/*临界判断*/
up_top = dig[pos];
LL cnt = 0;
for(int i = 0; i <= up_top; i++){
if(pre == 4 && i == 9)/*条件满足*/
cnt += dfs(pos-1, true, i, is_max && i == up_top);
else
cnt += dfs(pos-1, state, i, is_max && i == up_top);
}
if(!is_max)/*全局记忆化搜索:判断是否可记忆*/
dp[pos][state][pre] = cnt;
return cnt;/*返回当前状态的解*/
}