SVM即支持向量机作为神经网络复兴前的最强大模型,建模和推导有着严密的数学推导作为基础,在训练完成后计算速度也较快,得到了广泛的应用。本文先阐述SVM的基本问题和推导过程,再引入软间隔的SVM,最后引入核函数和求解方法。
问题引入
考虑简单的二分类问题,我们想找一个“最好”的超平面来分隔两类样本。可以看到,在样本点线性可分的情况下,能够找到多个超平面。但其中黑色超平面直观上来看是最合理的,所有样本点到黑色超平面的距离都比较远。新来一个样本时,由于噪声或训练集局限性(采样)等因素,新样本可能更加接近超平面,导致分类错误,而黑色超平面受的影响最小,因为所有样本到它的距离都比较远,泛化能力最强。
样本空间中,超平面方程如下:
样本空间中任意一点x0x0到超平面的距离为:
如何描述这个“最好”的超平面?我们引入两条“间隔”超平面作为“楚河汉界”,现在我们的目标变为:在满足所有样本点位于边界外的基础上(分类正确),使“楚河汉界”最宽(泛化能力最强)。
我们取两条间隔线为 wTx+b=±kwTx+b=±k,在任意间隔线上取一点,到另一间隔线的距离即为“楚河汉界”宽度,等于d=2k||w||d=2k||w||,此时我们的目标变为:
由于目标为最大间隔,而kk相当于衡量宽度的一个尺度,取不同尺度只会改变目标函数的优化程度,为了之后模型推导的方便,取。目标等价变为:
在该问题中,约束条件为仿射函数,为凸二次规划问题,可以直接求解。但推导得到等价的对偶问题后,可以更高效地求解。
拉格朗日乘数法与对偶问题
不失一般性,定义原问题p∗p∗如下:
构造拉格朗日函数:
定义:
有:
在αi≥0αi≥0的前提下,若不满足gi(w)≤0gi(w)≤0,可取不满足的约束,取对应αiαi为无穷,则函数为无穷。此时原问题p∗p∗的等价表述为:
得到对偶问题d∗d∗为:
当满足KKT条件时:
原问题和对偶问题有相同的解。
SVM对偶问题
回到SVM原问题p∗p∗:
构造拉格朗日算子,显然有:
通过解对偶问题来解原问题
对于L(w,α)L(w,α),极值在偏导为0处取到(注意此时L只是关于w和b的函数L只是关于w和b的函数),令:
得到:
将ww代回,得到:
可以看到LL只是关于的函数,对偶问题即为:
此时回过头来,我们看KKT条件,易得若αi>0αi>0,则有gi(w)=0gi(w)=0,即yi(wTxi+b)=1yi(wTxi+b)=1,xixi位于间隔超平面上,我们称这样的样本为支持向量。当我们求解得到αiαi代入后,由w=∑iαiyixiw=∑iαiyixi即可得到ww,由任意一支持向量均满足,将w,xi,yiw,xi,yi代入即可得到bb,最终判别函数为:
对于所有非支持向量的样本,有αi=0αi=0,即在最终的判别函数中只有支持向量起作用,故SVM可以看做一系列支持向量的“加权和”构成的模型。
本文总结了SVM的建模来由、对偶问题和模型推导过程,最终得到了SVM对偶问题的形式和判别函数。其余内容下文再续。