动态区间最小值
#include <iostream>
#include <cstdio>
using namespace std;
#define MAX_LEN 100010
//维护最小值的线段树
int A[MAX_LEN];
int S[MAX_LEN]; //S[i]存储结点i的询问信息
void Build(int o, int l, int r) { //建结点o
if(l == r) {
S[o] = A[l];
return;
}
int mid = l + (r - l) / 2;
Build(o*2, l, mid);
Build(o*2+1, mid+1, r);
S[o] = min(S[o*2], S[o*2+1]);
}
void Update(int o, int l, int r, int ind, int ans) { //o为当前更新的结点,ind为修改的结点
if(l == r) {
S[o] = ans;
return;
}
int mid = l + (r - l) / 2;
if(ind <= mid) Update(o*2, l, mid, ind, ans);
else Update(o*2+1, mid+1, r, ind, ans);
S[o] = min(S[o*2], S[o*2+1]);
}
int Query(int o, int l, int r, int ql, int qr) {
int ans = 1e9, mid = l + (r - l) / 2;
if(ql > r || qr < l) return ans;
if(ql <= l && r <= qr) return S[o];
if(ql <= mid) ans = min(ans, Query(o*2, l, mid, ql, qr));
if(qr > mid) ans = min(ans, Query(o*2+1, mid+1, r, ql, qr));
return ans;
}
int n, m;
int main() {
int flag, ind, k;
scanf("%d %d", &n, &m);
for(int i=1; i<=n; i++) scanf("%d", &A[i]);
Build(1, 1, n);
for(int i=1; i<=m; i++) {
scanf("%d%d%d", &flag, &ind, &k);
if(flag == 1) Update(1, 1, n, ind, k);
else if(flag == 2) printf("%d\n", Query(1, 1, n, ind, k));
}
return 0;
}
点修改,求区间和
#include <iostream>
#include <cstdio>
using namespace std;
#define MAX_LEN 500001
//点修改 求区间和 的线段树
int A[MAX_LEN];
int S[MAX_LEN<<2]; //S[i]存储结点i的询问信息
void Build(int o, int l, int r) { //建结点o
if(l == r) {
S[o] = A[l];
return;
}
int mid = l + (r - l) / 2;
Build(o*2, l, mid);
Build(o*2+1, mid+1, r);
S[o] = S[o*2] + S[o*2+1];
}
void Update(int o, int l, int r, int ind, int ans) { //o为当前更新的结点,ind为修改的结点
if(l == r) {
S[o] += ans;
return;
}
int mid = l + (r - l) / 2;
if(ind <= mid) Update(o*2, l, mid, ind, ans);
else Update(o*2+1, mid+1, r, ind, ans);
S[o] += ans;
}
int Query(int o, int l, int r, int ql, int qr) {
int ans = 0, mid = l + (r - l) / 2;
if(ql > r || qr < l) return 0;
if(ql <= l && r <= qr) return S[o];
if(ql <= mid) ans += Query(o*2, l, mid, ql, qr);
if(qr > mid) ans += Query(o*2+1, mid+1, r, ql, qr);
return ans;
}
int n, m;
int main() {
int flag, ind, k;
scanf("%d %d", &n, &m);
for(int i=1; i<=n; i++) scanf("%d", &A[i]);
Build(1, 1, n);
for(int i=1; i<=m; i++) {
scanf("%d%d%d", &flag, &ind, &k);
if(flag == 1) Update(1, 1, n, ind, k);
else if(flag == 2) printf("%d\n", Query(1, 1, n, ind, k));
}
return 0;
}
区间修改区间求和(Luogu【模版】 线段树1)
#include <iostream>
using namespace std;
typedef long long LL;
LL sum[400010], n, q;
LL add[400010], A[100010];
void build_tree(LL k1, LL l, LL r) {
if(l == r) {
sum[k1] = A[l];
return;
}
LL mid = l+r >> 1;
build_tree(k1<<1, l, mid);
build_tree(k1<<1|1, mid+1, r);
sum[k1] = sum[k1<<1] + sum[k1<<1|1];
}
void pushdown(int k1, int l, int r) {
LL mid = l+r >> 1;
add[k1<<1] += add[k1];
add[k1<<1|1] += add[k1];
sum[k1<<1|1] += add[k1] * (r-mid);
sum[k1<<1] += add[k1] * (mid-l+1);
add[k1] = 0;
}
void Update(LL k1, LL l, LL r, LL k, LL L, LL R) {
if(l > R || r < L) return;
if(L <= l && r <= R) {
sum[k1] += k*(r-l+1);
add[k1] += k;
return;
}
LL mid = l+r >> 1;
pushdown(k1, l, r);
Update(k1<<1, l, mid, k, L, R);
Update(k1<<1|1, mid+1, r, k, L, R);
sum[k1] = sum[k1<<1] + sum[k1<<1|1];
}
LL Query(LL k1, LL l, LL r, LL L, LL R) {
if(l > R || r < L) return 0;
if(L <= l && r <= R) {
return sum[k1];
}
LL mid = l + r >> 1;
pushdown(k1, l, r);
return Query(k1<<1, l, mid, L, R) + Query(k1<<1|1, mid+1, r, L, R);
}
int main() {
cin >> n >> q;
for(LL i=1; i<=n; i++) cin >> A[i];
build_tree(1, 1, n);
for(LL i=1; i<=q; i++) {
LL opt, x, y, k;
cin >> opt;
if(opt == 1) {
cin >> x >> y >> k;
Update(1, 1, n, k, x, y);
} else if(opt == 2) {
cin >> x >> y;
cout << Query(1, 1, n, x, y) << endl;
}
}
return 0;
}
区间两种修改区间求和(Luogu【模版】线段树2)
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
#define MAXN 100010
LL N, M, P;
LL sum[MAXN<<2], A[MAXN];
LL add[MAXN<<2], mul[MAXN<<2];
void build(LL k, LL l, LL r) {
if(l == r) {
sum[k] = A[l] % P;
return;
}
LL mid = l+r >> 1;
build(k<<1, l, mid);
build(k<<1|1, mid+1, r);
sum[k] = (sum[k<<1] + sum[k<<1|1]) % P;
add[k] = 0;
mul[k] = 1;
}
void Update_add(LL k1, LL l, LL r, LL x) {
add[k1] += x;
add[k1] %= P;
sum[k1] = (sum[k1] + (r-l+1) * x) % P;
}
void Update_mul(LL k1, LL l, LL r, LL x) {
add[k1] *= x;
add[k1] %= P;
mul[k1] *= x;
mul[k1] %= P;
sum[k1] = (sum[k1] * x) % P;
}
void pushdown(LL k1, LL l, LL r) {
LL mid = l+r >> 1;
if(mul[k1] != 1) {
Update_mul(k1<<1, l, mid, mul[k1]);
Update_mul(k1<<1|1, mid+1, r, mul[k1]);
mul[k1] = 1;
}
if(add[k1]) {
Update_add(k1<<1, l, mid, add[k1]);
Update_add(k1<<1|1, mid+1, r, add[k1]);
add[k1] = 0;
}
}
void ADD(LL k1, LL l, LL r, LL x, LL L, LL R) {
if(l > R || r < L) return;
if(L <= l && r <= R) {
Update_add(k1, l, r, x);
return;
}
LL mid = l+r >> 1;
pushdown(k1, l, r);
ADD(k1<<1, l, mid, x, L, R);
ADD(k1<<1|1, mid+1, r, x, L, R);
sum[k1] = (sum[k1<<1] + sum[k1<<1|1]) % P;
}
void MUL(LL k1, LL l, LL r, LL x, LL L, LL R) {
if(l > R || r < L) return;
if(L <= l && r <= R) {
Update_mul(k1, l, r, x);
return;
}
LL mid = l+r >> 1;
pushdown(k1, l, r);
MUL(k1<<1, l, mid, x, L, R);
MUL(k1<<1|1, mid+1, r, x, L, R);
sum[k1] = (sum[k1<<1] + sum[k1<<1|1]) % P;
}
LL Query(LL k1, LL l, LL r, LL L, LL R) {
if(l > R || r < L) return 0;
if(L <= l && r <= R) return sum[k1];
LL mid = l+r >> 1;
pushdown(k1, l, r);
return (Query(k1<<1, l, mid, L, R) + Query(k1<<1|1, mid+1, r, L, R)) % P;
}
int main() {
LL opt, x, y, k;
scanf("%lld%lld%lld", &N, &M, &P);
for(LL i=1; i<=N; i++) scanf("%lld", &A[i]);
build(1, 1, N);
for(LL i=1; i<=M; i++) {
scanf("%lld%lld%lld", &opt, &x, &y);
if(opt == 1) {
scanf("%lld", &k);
MUL(1, 1, N, k, x, y);
} else if(opt == 2) {
scanf("%lld", &k);
ADD(1, 1, N, k, x, y);
} else if(opt == 3) {
printf("%lld\n", Query(1, 1, N, x, y));
}
}
return 0;
}