题意:一个非常大的数a是否能整除b
别人都说是同余,我上网看定理没研究出来啥,可能是推出来的结论,记住就好
ans=(ans*10+a[i]-'0')%b,i从0-n-1,最后结果为0就是能整除
注意:b用long long 不然会炸,不知道为什么,希望大佬看的时候评论告诉我;
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
int main()
{
int t,cas=1;
scanf("%d",&t);
while(t--)
{
char a[305];
ll b,ans=0;
scanf("%s%lld",a,&b);
int n=strlen(a);
b=abs(b);
for(int i=0;i<n;i++)
{
if(a[i]=='-') continue;
ans=(ans*10+a[i]-'0')%b;
}
printf("Case %d: ",cas++);
if(ans) printf("not divisible\n");
else printf("divisible\n");
}
}
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an integer a is divisible by an integer b if and only if there exists an integer c such that a = b * c.
Input
Input starts with an integer T (≤ 525), denoting the number of test cases.
Each case starts with a line containing two integers a (-10200 ≤ a ≤ 10200) and b (|b| > 0, b fits into a 32 bit signed integer). Numbers will not contain leading zeroes.
Output
For each case, print the case number first. Then print 'divisible' if a is divisible by b. Otherwise print 'not divisible'.
Sample Input
6
101 101
0 67
-101 101
7678123668327637674887634 101
11010000000000000000 256
-202202202202000202202202 -101
Sample Output
Case 1: divisible
Case 2: divisible
Case 3: divisible
Case 4: not divisible
Case 5: divisible
Case 6: divisible