Description
I was trying to solve problem '1234 - Harmonic Number', I wrote the following code
long long H( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
res = res + n / i;
return res;
}
Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.
InputInput starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n < 231).
OutputFor each case, print the case number and H(n) calculated by the code.
Sample Input
11
1
2
3
4
5
6
7
8
9
10
2147483647
Sample OutputCase 1: 1
Case 2: 3
Case 3: 5
Case 4: 8
Case 5: 10
Case 6: 14
Case 7: 16
Case 8: 20
Case 9: 23
Case 10: 27
Case 11: 46475828386
题解:用递归的方法去求H(n)太费事了,找规律,减少求H(n)的时间。以100为例,通过列举几项发现,求H(n),即求有多少个1,多少个2,多少个3,一直到n/2,最后加上n。可以将循环长度减到sqrt(n),但会出现重复计算的地方,只要剪去就可以了。
//很好的题解:
先求出前sqrt(n)项和:即n/1+n/2+...+n/sqrt(n)
再求出后面所以项之和.后面每一项的值小于sqrt(n),计算值为1到sqrt(n)的项的个数,乘以其项值即可快速得到答案
例如:10/1+10/2+10/3+...+10/10
sqrt(10) = 3
先求出其前三项的和为10/1+10/2+10/3
在求出值为1的项的个数为(10/1-10/2)个,分别是(10/10,10/9,10/8,10/7,10/6),值为2个项的个数(10/2-10/3)分别是(10/5,10/4),在求出值为3即sqrt(10)的项的个数.
显然,值为sqrt(10)的项计算了2次,减去一次即可得到答案。当n/(int)sqrt(n) == (int)sqrt(n)时,值为sqrt(n)的值会被计算2次。
代码如下:
#include<stdio.h>
#include<cmath>
int main()
{
long long r,t,i,s,sum,j;
scanf("%lld",&t);
j=1;
while(t--)
{
scanf("%lld",&r);
s=sqrt(r);
sum=0;
for(i=1;i<s+1;i++)
{
sum+=(r/i-r/(i+1))*i+r/i;
if(r/i==i)//出现重叠的地方
sum-=i;
}
printf("Case %lld: %lld\n",j++,sum);
}
return 0;
}