hdu-1856 More is better

本文介绍了一个算法问题,即如何计算在一个包含大量人员的房间中,根据直接朋友关系能够形成的最大朋友圈规模。通过输入一系列直接朋友对,算法需找出能够构成的最大朋友圈包含的人数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

More is better

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 327680/102400 K (Java/Others)
Total Submission(s): 18778    Accepted Submission(s): 6902


Problem Description
Mr Wang wants some boys to help him with a project. Because the project is rather complex, the more boys come, the better it will be. Of course there are certain requirements.

Mr Wang selected a room big enough to hold the boys. The boy who are not been chosen has to leave the room immediately. There are 10000000 boys in the room numbered from 1 to 10000000 at the very beginning. After Mr Wang's selection any two of them who are still in this room should be friends (direct or indirect), or there is only one boy left. Given all the direct friend-pairs, you should decide the best way.
 

Input
The first line of the input contains an integer n (0 ≤ n ≤ 100 000) - the number of direct friend-pairs. The following n lines each contains a pair of numbers A and B separated by a single space that suggests A and B are direct friends. (A ≠ B, 1 ≤ A, B ≤ 10000000)
 

Output
The output in one line contains exactly one integer equals to the maximum number of boys Mr Wang may keep.
 

Sample Input
  
4 1 2 3 4 5 6 1 6 4 1 2 3 4 5 6 7 8
 

Sample Output
  
4 2
Hint
A and B are friends(direct or indirect), B and C are friends(direct or indirect), then A and C are also friends(indirect). In the first sample {1,2,5,6} is the result. In the second sample {1,2},{3,4},{5,6},{7,8} are four kinds of answers.
 

Author
lxlcrystal@TJU
 

Source
 

#include<stdio.h>  
#define N 10000000  

int father[N],num[N];  

void initial()
{  
    int i;  
    for(i=1;i<=N;i++)  
    {  
        father[i]=i;  
        num[i]=1;
    }  
}  

int find(int x) 
{  
    if(father[x]!=x)  
        father[x]=find(father[x]);  
    return father[x];  
}  

void hebing(int a,int b) 
{  
    int p=find(a);  
    int q=find(b);  
    if(p!=q)  
    {  
        father[p]=q;  
        num[q]+=num[p];
    }  
} 
 
int main()  
{  
    int n,a,b,i,sum,max;  
    while(~scanf("%d",&n))  
    {  
        if(n==0)  
        {  
            printf("1\n");  
            continue;  
        }  
        max=0;  
        initial(); 
        for(i=0;i<n;i++)  
        {  
            scanf("%d%d",&a,&b);  
            if(a>max)  
                max=a;  
            if(b>max)  
                max=b;  
            hebing(a,b);  
        }  
        int Max=0;  
        for(i=1;i<=max;i++)  
            if(num[i]>Max) 
                Max=num[i];  
        printf("%d\n",Max);  
    }  
    return 0;  
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值