【基础】经典递归问题——汉诺塔

文章展示了如何用C++编写函数解决汉诺塔问题,输入N个碟子数量,输出最少移动步骤,使用递归策略完成任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。 
后来,这个传说就演变为汉诺塔游戏:
1.有三根杆子A,B,C。A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上

经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片:  如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C   此外,汉诺塔问题也是程序设计中的经典递归问题。
算法思路:
1.如果只有一个金片,则把该金片从源移动到目标棒,结束。
2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒.

输入

一个整数N,表示A柱上有N个碟子。(0<n<=10)

输出

若干行,即移动的最少步骤

上代码!

#include<bits/stdc++.h>

using namespace std;

void hanoi(int n,char x,char z,char y){

    if(n==1){

        cout<<x<<" To "<<z<<endl;

        return;

    }

    else{

        hanoi(n-1,x,y,z);

        cout<<x<<" To "<<z<<endl;

        hanoi(n-1,y,z,x);

    }

}

int main(){

    int n;

    cin>>n;

    hanoi(n,'A','C','B');

    return 0;

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值