算法 | 如何通过Math.random()方法实现X平方或更多次方的概率?

本文深入探讨Java中的Math.random()方法,包括其等概率特性验证、范围扩展及如何实现特定概率分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本文主要介绍JavaMath.random()方法以及该方法的简单应用。

每种语言都有随机方法,在Java中的随机方法有Math.random()方法、Random类。

Math.random

Math.random()方法的返回值的是double类型,其返回值的范围为[0,1),包含0,不包含1,会把0 ~ 1之间的数进行等概率返回。

等概率验证

所说是等概率返回其中的某一个数,那我们能不能验证一下?

验证思路:

  1. 设置一个循环,循环1千万次。
  2. 定义一个变量count,用来记录这1千万次中,小于0.4的个数。
  3. 在循环里判断如果返回值小于0.4,则count值加1。
  4. count比上1千万,如果得出的值在0.4左右,说明是等概率的。

当然这个循环次数和0.4也可以是其他值。

来看下代码实现:

public class Code09_Random {

    public static void main(String[] args) {
        int times = 10000000;
        int count = 0;
        for (int i = 0; i < times; i++) {
            if (Math.random() < 0.4) {
                count++;
            }
        }

        System.out.println((double) count / (double) times);
    }
}
复制代码

经过多次执行验证结果如下:

当比较的数为0.4时,输出结果为0.40015690.39983260.3999383

当比较的数为0.68时,输出结果为0.67999990.68003830.6800142

当比较的数为0.8时,输出结果为0.79993520.8000830.7999917

等等,经过多次验证,发现比较值和输出的结果是非常接近的,这说明Math.random()是等概率返回的。

扩大范围

Math.random()返回值的范围为[0,1),如果把Math.random()返回值乘以5,即Math.random() * 5,那么就可以得到[0,5)这个范围的数据,并且是等概率的,等概率验证方式与之前相同,不再赘述。

同样的,想要返回[0,K)之间的数,只需要乘以K即可,Math.random() * K,如果把得到的数据强转成int型,就可以得到[0,K-1]等概率数据。

Math.random()实现X2的概率

解析

Math.random()返回值的范围为[0,1)并且是等概率的,那么[0,X)上的数有X个,那么如果实现[0,X)范围的数据返回的概率为 X2 呢?

我们知道,在数学上,X和X2分别对应线性和曲线,对于X来说,[0, 0.3]出现的概率为0.3,[0, 0.8]出现的概率为0.8,[0, 1)出现的概率为1。

对于X2来说,X越小他对应的的概率越低,但是最终[0, 1)这个范围的概率是1。

代码实现

要实现这个功能,其实也很简单,调用两次Math.random()获取其最大值就可以了。

public static double x2Probability() {
    return Math.max(Math.random(), Math.random());
}
复制代码

嗯?是不是感觉很不可思议。下面我们来验证一下。

概率验证

验证思路也很简单,跟上面一样,定义一个count来记录一下,最后获取比例。怎么知道这个比例对不对呢?我们再获取目标概率的平方来对比下,如果两个值很接近的话,说明是对的。

public class Code10_Random {

    public static void main(String[] args) {
        int times = 10000000;
        int count = 0;
        double target = 0.4;
        for (int i = 0; i < times; i++) {
            if (x2Probability() < target) {
                count++;
            }
        }
        System.out.println((double) count / (double) times);
        System.out.println(Math.pow(target, 2));
    }

    public static double x2Probability() {
        return Math.max(Math.random(), Math.random());
    }
}
复制代码

多次执行结果如下:

# 0.4 对应的结果
0.1599787
0.16000000000000003
复制代码
# 0.8 对应的结果
0.6397657
0.6400000000000001
复制代码

实际测试的结果真的和X2的平方差不多。

原理解析

首先范围为[0,X)x2Probability方法调用了2次Math.random()方法,并获取最大值,如果这个最大值落在[0,X)范围内,说明两次random产生的随机数,都落在了[0,X)范围内,概率自然是X2了。

当第一个Math.random()方法产生的随机数落在[0,X)范围内的概率为X,第二个Math.random()方法产生的随机数落在[0,X)范围内的概率也为X,两次随机事件是独立的,所以总概率为X2。

拓展

如果是想通过Math.random()实现X3的概率呢?和上面的原理是一样的,执行3次Math.random()方法即可,代码如下,验证方法和上面一致,就不再进行验证了。

public static double x3Probability() {
    return Math.max(Math.random(), Math.max(Math.random(), Math.random()));
}
复制代码

如果是想通过Math.random()实现XK的概率呢?同理,我们只需要调用KMath.random()方法即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值