【AI大模型应用开发】AI+知识图谱极简入门:手把手带你体验LangChain实现知识图谱创建和查询(附代码和源码分析)

大家好,我是 同学小张,持续学习C++进阶知识AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。


最近在大模型应用中使用图数据库或知识图谱越来越流行。图在表示和存储多样化且相互关联的信息方面具有天然优势,能够轻松捕捉不同数据类型间的复杂关系和属性,从而更好地给大模型提供上下文或数据支持。本文一起来看下如何在大模型应用中使用图数据库或知识图谱。

本文仅是简单入门和体验,不会图数据库或neo4j也无所谓,跟着本文步骤走就可以。本文可以帮你体会一下知识图谱在RAG中的应用方法,有了体会,后面如果需要再学图数据库的使用方法。

0. 什么是知识图谱

0.1 概念

知识图谱是一种结构化的语义知识库,它通过图的形式存储和表示实体(如人、地点、组织等)以及实体之间的关系(如人物关系、地理位置关系等)。知识图谱通常用于增强搜索引擎的语义理解能力,提供更丰富的信息和更准确的搜索结果。

知识图谱的主要特点包括:

  1. 实体(Entity):知识图谱中的基本单元,代表现实世界中的一个对象或概念。

  2. 关系(Relation):实体之间的联系,如“属于”、“位于”、“创立者”等。

  3. 属性(Attribute):实体所具有的描述性信息,如人的年龄、地点的经纬度等。

  4. 图结构(Graph Structure):知识图谱以图的形式组织数据,包含节点(实体)和边(关系)。

  5. 语义网络(Semantic Network):知识图谱可以视为一种语义网络,其中的节点和边都具有语义含义。

  6. 推理(Inference):知识图谱可以用于推理,即通过已知的实体和关系推导出新的信息。

知识图谱在搜索引擎优化(SEO)、推荐系统、自然语言处理(NLP)、数据挖掘等领域有广泛的应用。例如,Google的Knowledge Graph、Wi

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

同学小张

如果觉得有帮助,欢迎给我鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值