Okabe and Banana Trees 思路题

在二维平面上,Okabe需要沿着一条特定的线选择一个轴对齐的矩形区域来收集尽可能多的香蕉。每棵树位于整数坐标上且含有对应数量的香蕉。任务是确定最佳矩形以最大化收获。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Okabe needs bananas for one of his experiments for some strange reason. So he decides to go to the forest and cut banana trees.

Consider the point (x, y) in the 2D plane such that x and y are integers and 0 ≤ x, y. There is a tree in such a point, and it has x + y bananas. There are no trees nor bananas in other points. Now, Okabe draws a line with equation . Okabe can select a single rectangle with axis aligned sides with all points on or under the line and cut all the trees in all points that are inside or on the border of this rectangle and take their bananas. Okabe's rectangle can be degenerate; that is, it can be a line segment or even a point.

Help Okabe and find the maximum number of bananas he can get if he chooses the rectangle wisely.

Okabe is sure that the answer does not exceed 1018. You can trust him.

Input

The first line of input contains two space-separated integers m and b (1 ≤ m ≤ 1000, 1 ≤ b ≤ 10000).

Output

Print the maximum number of bananas Okabe can get from the trees he cuts.

Example

Input

1 5

Output

30

Input

2 3

Output

25

Note

The graph above corresponds to sample test 1. The optimal rectangle is shown in red and has 30 bananas.

 

#include<stdio.h>
int main()
{
    long long int m,b,x;
    long long int max,count;
    int i,j;
    while(scanf("%lld %lld",&m,&b)!=EOF)
    {
        max=0;
        for(i=b;i>=0;i--)//遍历y  此时求得的x一定是一个整数 
        {
            count=0;
            x=(b-i)*m;
            count=(1+i)*i/2*(x+1)+(1+x)*x/2*(i+1);//求数量用等差数列前n项和

            if(count>max)
                max=count;

        }
        printf("%lld\n",max);

    }

}

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值