Slim Span

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

 
Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

nm 
a1b1w1
  
ambmwm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbkconnected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

题意:给出n个点m条边,问能不能把这n个点构成一棵树,如果能输出树中最大边减最小边的最小值,如果不能输出-1.

思路:先利用结构体把这几条边从小到大排序,然后两层for循环尝试着构造树的枝,在尝试的过程中用并查集如果两点的根节点一样说明会成环,不能将这条枝加上,依次便利直到加满n-1条,那么最后加的一条减去第一天就是最大边减最小边,将循环走完不断更新这个值,最后输出即可。代码如下:

#include<stdio.h>
#include<string.h>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std;
int m,n,flag,f[110];
struct node
{
    int a,b,l;
}list[10010];
bool cmp(node x,node y)
{
    return x.l<y.l;
}
void init()
{
    for(int i=1; i<=n; i++)
        f[i]=i;
}
int getf(int v)
{
    if(f[v]==v)
        return v;
    else
    {
        f[v]=getf(f[v]);
        return f[v];
    }
}
void merge(int u,int v)
{
    flag=0;
    int t1=getf(u);
    int t2=getf(v);
    if(t1!=t2)   // 没有成环就可以加进去啦
    {
        f[t2]=t1;
        flag=1;
    }
    return ;
}
int main()
{
    int i,j,t;
    while(~scanf("%d %d",&n,&m)&&(n||m))
    {
        int minn=inf;
        for(i=0; i<m; i++)
            scanf("%d %d %d",&list[i].a,&list[i].b,&list[i].l);
        sort(list,list+m,cmp);
        for(i=0; i<m; i++)
        {
            init();
            int num=0;
            for(j=i; j<m; j++)
            {
                merge(list[j].a,list[j].b);
                if(flag==1)
                {
                    num++;
                    if(num==n-1)  // 找到n-1条边就可以构成树
                    {
                        t=list[j].l-list[i].l;
                        if(t<minn)
                            minn=t;
                    }
                }
            }
        }
        if(minn==inf)
            printf("-1\n");
        else
            printf("%d\n",minn);
    }
    return 0;
}

 

内容概要:本文深入探讨了金属氢化物(MH)储氢系统在燃料电池汽车中的应用,通过建立吸收/释放氢气的动态模型和热交换模型,结合实验测试分析了不同反应条件下的性能表现。研究表明,低温环境有利于氢气吸收,高温则促进氢气释放;提高氢气流速和降低储氢材料体积分数能提升系统效率。论文还详细介绍了换热系统结构、动态性能数学模型、吸放氢特性仿真分析、热交换系统优化设计、系统控制策略优化以及工程验证与误差分析。此外,通过三维动态建模、换热结构对比分析、系统级性能优化等手段,进一步验证了金属氢化物储氢系统的关键性能特征,并提出了具体的优化设计方案。 适用人群:从事氢能技术研发的科研人员、工程师及相关领域的研究生。 使用场景及目标:①为储氢罐热管理设计提供理论依据;②推动车载储氢技术的发展;③为金属氢化物储氢系统的工程应用提供量化依据;④优化储氢系统的操作参数和结构设计。 其他说明:该研究不仅通过建模仿真全面验证了论文实验结论,还提出了具体的操作参数优化建议,如吸氢阶段维持25-30°C,氢气流速0.012g/s;放氢阶段快速升温至70-75°C,水速18-20g/min。同时,文章还强调了安全考虑,如最高工作压力限制在5bar以下,温度传感器冗余设计等。未来的研究方向包括多尺度建模、新型换热结构和智能控制等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值