C:\ProgramData\miniconda3\envs\torch\python.exe D:\桌面\CosTaylorFormer\train.py
Patches shape after stacking: (10249, 21, 21, 200)
Patches shape after stacking: (10249, 21, 21, 200)
🚀 开始训练 CosTaylorFormer...
Epoch [1/150], Loss: 43.4528, Val OA: 31.25%
Epoch [2/150], Loss: 42.4664
Epoch [3/150], Loss: 41.5278
Epoch [4/150], Loss: 40.5920
Epoch [5/150], Loss: 39.6803, Val OA: 1020.83%
Epoch [6/150], Loss: 38.8169
Epoch [7/150], Loss: 37.9496
Epoch [8/150], Loss: 37.1224
Epoch [9/150], Loss: 36.3114
Epoch [10/150], Loss: 35.5241, Val OA: 2406.25%
Epoch [11/150], Loss: 34.7522
Epoch [12/150], Loss: 34.0080
Epoch [13/150], Loss: 33.2869
Epoch [14/150], Loss: 32.5787
Epoch [15/150], Loss: 31.9104, Val OA: 4145.83%
Epoch [16/150], Loss: 31.2306
Epoch [17/150], Loss: 30.6192
Epoch [18/150], Loss: 29.9916
Epoch [19/150], Loss: 29.4030
Epoch [20/150], Loss: 28.8199, Val OA: 4895.83%
Epoch [21/150], Loss: 28.2722
Epoch [22/150], Loss: 27.7486
Epoch [23/150], Loss: 27.2229
Epoch [24/150], Loss: 26.7177
Epoch [25/150], Loss: 26.2442, Val OA: 5270.83%
Epoch [26/150], Loss: 25.7638
Epoch [27/150], Loss: 25.3142
Epoch [28/150], Loss: 24.8809
Epoch [29/150], Loss: 24.4743
Epoch [30/150], Loss: 24.0535, Val OA: 5468.75%
Epoch [31/150], Loss: 23.6630
Epoch [32/150], Loss: 23.2800
Epoch [33/150], Loss: 22.9065
Epoch [34/150], Loss: 22.5728
Epoch [35/150], Loss: 22.2058, Val OA: 5687.50%
Epoch [36/150], Loss: 21.8748
Epoch [37/150], Loss: 21.5574
Epoch [38/150], Loss: 21.2399
Epoch [39/150], Loss: 20.9557
Epoch [40/150], Loss: 20.6562, Val OA: 6156.25%
Epoch [41/150], Loss: 20.3785
Epoch [42/150], Loss: 20.1045
Epoch [43/150], Loss: 19.8239
Epoch [44/150], Loss: 19.5790
Epoch [45/150], Loss: 19.3215, Val OA: 6593.75%
Epoch [46/150], Loss: 19.0662
Epoch [47/150], Loss: 18.8424
Epoch [48/150], Loss: 18.6226
Epoch [49/150], Loss: 18.4087
Epoch [50/150], Loss: 18.1944, Val OA: 6927.08%
Epoch [51/150], Loss: 17.9813
Epoch [52/150], Loss: 17.7701
Epoch [53/150], Loss: 17.5636
Epoch [54/150], Loss: 17.3885
Epoch [55/150], Loss: 17.1832, Val OA: 7135.42%
Epoch [56/150], Loss: 17.0115
Epoch [57/150], Loss: 16.8442
Epoch [58/150], Loss: 16.6584
Epoch [59/150], Loss: 16.4863
Epoch [60/150], Loss: 16.3243, Val OA: 7427.08%
Epoch [61/150], Loss: 16.1752
Epoch [62/150], Loss: 15.9966
Epoch [63/150], Loss: 15.8674
Epoch [64/150], Loss: 15.7077
Epoch [65/150], Loss: 15.5647, Val OA: 7625.00%
Epoch [66/150], Loss: 15.4333
Epoch [67/150], Loss: 15.2749
Epoch [68/150], Loss: 15.1445
Epoch [69/150], Loss: 15.0284
Epoch [70/150], Loss: 14.8942, Val OA: 7843.75%
Epoch [71/150], Loss: 14.7634
Epoch [72/150], Loss: 14.6415
Epoch [73/150], Loss: 14.5019
Epoch [74/150], Loss: 14.3930
Epoch [75/150], Loss: 14.2826, Val OA: 8062.50%
Epoch [76/150], Loss: 14.1672
Epoch [77/150], Loss: 14.0549
Epoch [78/150], Loss: 13.9452
Epoch [79/150], Loss: 13.8205
Epoch [80/150], Loss: 13.7275, Val OA: 8250.00%
Epoch [81/150], Loss: 13.6212
Epoch [82/150], Loss: 13.5156
Epoch [83/150], Loss: 13.4269
Epoch [84/150], Loss: 13.3015
Epoch [85/150], Loss: 13.2046, Val OA: 8302.08%
Epoch [86/150], Loss: 13.1294
Epoch [87/150], Loss: 13.0532
Epoch [88/150], Loss: 12.9528
Epoch [89/150], Loss: 12.8686
Epoch [90/150], Loss: 12.7616, Val OA: 8364.58%
Epoch [91/150], Loss: 12.6967
Epoch [92/150], Loss: 12.5890
Epoch [93/150], Loss: 12.5213
Epoch [94/150], Loss: 12.4448
Epoch [95/150], Loss: 12.3607, Val OA: 8364.58%
Epoch [96/150], Loss: 12.2936
Epoch [97/150], Loss: 12.1998
Epoch [98/150], Loss: 12.1368
Epoch [99/150], Loss: 12.0504
Epoch [100/150], Loss: 11.9830, Val OA: 8354.17%
Epoch [101/150], Loss: 11.8981
Epoch [102/150], Loss: 11.8172
Epoch [103/150], Loss: 11.7494
Epoch [104/150], Loss: 11.7126
Epoch [105/150], Loss: 11.6203, Val OA: 8406.25%
Epoch [106/150], Loss: 11.5700
Epoch [107/150], Loss: 11.4807
Epoch [108/150], Loss: 11.4201
Epoch [109/150], Loss: 11.3679
Epoch [110/150], Loss: 11.3072, Val OA: 8447.92%
Epoch [111/150], Loss: 11.2429
Epoch [112/150], Loss: 11.1852
Epoch [113/150], Loss: 11.1204
Epoch [114/150], Loss: 11.0569
Epoch [115/150], Loss: 11.0017, Val OA: 8510.42%
Epoch [116/150], Loss: 10.9446
Epoch [117/150], Loss: 10.8780
Epoch [118/150], Loss: 10.8137
Epoch [119/150], Loss: 10.7751
Epoch [120/150], Loss: 10.7354, Val OA: 8541.67%
Epoch [121/150], Loss: 10.6473
Epoch [122/150], Loss: 10.6103
Epoch [123/150], Loss: 10.5542
Epoch [124/150], Loss: 10.5102
Epoch [125/150], Loss: 10.4589, Val OA: 8604.17%
Epoch [126/150], Loss: 10.3976
Epoch [127/150], Loss: 10.3562
Epoch [128/150], Loss: 10.3088
Epoch [129/150], Loss: 10.2636
Epoch [130/150], Loss: 10.2125, Val OA: 8625.00%
Epoch [131/150], Loss: 10.1692
Epoch [132/150], Loss: 10.1154
Epoch [133/150], Loss: 10.0641
Epoch [134/150], Loss: 10.0517
Epoch [135/150], Loss: 9.9831, Val OA: 8666.67%
Epoch [136/150], Loss: 9.9327
Epoch [137/150], Loss: 9.8981
Epoch [138/150], Loss: 9.8534
Epoch [139/150], Loss: 9.8104
Epoch [140/150], Loss: 9.7675, Val OA: 8677.08%
Epoch [141/150], Loss: 9.7208
Epoch [142/150], Loss: 9.6769
Epoch [143/150], Loss: 9.6388
Epoch [144/150], Loss: 9.5997
Epoch [145/150], Loss: 9.5792, Val OA: 8677.08%
Epoch [146/150], Loss: 9.5295
Epoch [147/150], Loss: 9.4855
Epoch [148/150], Loss: 9.4389
Epoch [149/150], Loss: 9.4027
Epoch [150/150], Loss: 9.3762, Val OA: 8708.33%
✅ 最佳验证集 OA: 8708.33%这咋能到8000%?有问题把
最新发布