【暴力】LeetCode 300. Longest Increasing Subsequence

本文介绍了解决LeetCode 300题——最长递增子序列问题的两种方法。第一种是时间复杂度为O(n^2)的暴力搜索算法;第二种则是更高效的O(nlogn)算法。通过实例代码详细解释了两种算法的具体实现。

LeetCode 300. Longest Increasing Subsequence

Solution1:我的答案
暴力搜索,时间复杂度 O(n2) O ( n 2 )

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size(), res = 1;
        if (!n) return 0;
        if (n == 1) return 1;
        //注意:这种对数组初始化的方式只会初始化第一个为1
        int dp[n] = {1};
        for (int i = 1; i < n; i++) {
            dp[i] = 1;
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = max(dp[i], dp[j] + 1);
                } 
            }
            res = max(dp[i], res);
        }
        return res;
    }
};

Solution2:
时间复杂度 O(nlogn) O ( n l o g n )
参考链接:[1]http://www.cnblogs.com/grandyang/p/4938187.html
[2]https://leetcode.com/problems/longest-increasing-subsequence/discuss/148060/Easy-To-Understand-Python-Code-With-Clear-Explanation-O(nlogn)
一个有点奇妙的算法~

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> dp;
        for (int i = 0; i < nums.size(); ++i) {
            int left = 0, right = dp.size();
            while (left < right) {
                int mid = left + (right - left) / 2;
                if (dp[mid] < nums[i]) left = mid + 1;
                else right = mid;
            }
            if (right >= dp.size()) dp.push_back(nums[i]);
            else dp[right] = nums[i];
        }
        return dp.size();
    }
};
【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值