力扣
题目略有不同,力扣中问题是返回第k大的节点值。
1.中序遍历
Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def findTargetNode(self, root: Optional[TreeNode], cnt: int) -> int:
res = []
self.search(root, cnt, res)
res.reverse()
return res[cnt-1]
def search(self, root, cnt, res): # 右根左遍历二叉搜索树,即可得到降序数组
if not root:
return
self.search(root.left, cnt, res)
res.append(root.val)
self.search(root.right, cnt, res)
Java
class Solution {
public int findTargetNode(TreeNode root, int cnt) {
List<Integer> valList = new ArrayList<>();
myInOrder(root, valList);
return valList.get(valList.size() - cnt);
}
public void myInOrder(TreeNode root, List<Integer> valList) {
if (root == null) {
return;
}
myInOrder(root.left, valList);
valList.add(root.val);
myInOrder(root.right, valList);
}
}
中序遍历逆序 + 剪枝
Python
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def findTargetNode(self, root: Optional[TreeNode], cnt: int) -> int:
res = []
self.search(root, cnt, res)
return res[-1]
def search(self, root, cnt, res): # 右根左遍历二叉搜索树,即可得到降序数组
if not root or len(res) == cnt:
return
self.search(root.right, cnt, res)
if len(res) == cnt:
return
res.append(root.val)
self.search(root.left, cnt, res)
if len(res) == cnt:
return
Java
class Solution {
public int findTargetNode(TreeNode root, int cnt) {
List<Integer> valList = new ArrayList<>();
myReInOrder(root, valList, cnt);
return valList.get(valList.size() - 1);
}
public void myReInOrder(TreeNode root, List<Integer> valList, int size) {
if (root == null) {
return;
}
myReInOrder(root.right, valList, size);
if (valList.size() == size) { // 增加剪枝
return;
}
valList.add(root.val);
myReInOrder(root.left, valList, size);
}
}
##Solution1:
20180916重做
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
*/
class Solution {
public:
TreeNode* KthNode(TreeNode* pRoot, int k) {
if(pRoot == NULL || k <= 0)
return NULL;
vector<struct TreeNode*> result;
Pre_travel(pRoot, result);
if(result.size() < k)
return NULL;
return result[k - 1];
}
void Pre_travel(struct TreeNode* pRoot,
vector<struct TreeNode*> &res) {
if (!pRoot)
return;
if(pRoot->left)
Pre_travel(pRoot->left, res);
res.push_back(pRoot);
if(pRoot->right)
Pre_travel(pRoot->right, res);
}
};
##Solution2:
利用二叉搜索树已经有序的性质,直接用中序遍历,得到第k个点返回即可~~~
注意在写递归时,很容易陷进无限递归中导致栈溢出。故递归结束条件应当明确!
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
*/
class Solution {
public:
TreeNode* KthNode(TreeNode* pRoot, int k) {
if(pRoot == NULL || k <= 0)
return NULL;
return Inorder_travel(pRoot, k);
}
struct TreeNode* Inorder_travel(struct TreeNode *pRoot, int &k) {
struct TreeNode *res = NULL;
if(pRoot->left != NULL)
res = Inorder_travel(pRoot->left, k);
if(res == NULL) {
if(k == 1)
res = pRoot;
k--;
}
if(res == NULL && pRoot->right != NULL)
res = Inorder_travel(pRoot->right, k);
return res;
}
};