XPS测试原理相关问题

本文围绕XPS测试展开,介绍了俄歇电子和荧光产生过程,解释p、d、f轨道有两个裂分峰的原因是电子自旋 - 轨道偶合效应。还说明多数元素有XPS特征谱峰及化学位移现象,对比了XPS和EDS检测原理,指出二者信息互补,助于了解样品性质。

1.俄歇电子和荧光产生过程?

XPS测试过程中,原子芯能级电子吸收X射线被电离,而相应的芯能级会留有空位,此时原子处于激发态会自发地发生弛豫,而退激发回到稳态。弛豫过程分为辐射弛豫和非辐射弛豫,前者发射出荧光,后者发射出俄歇电子。

XPS也会收集到俄歇电子,从而产生俄歇谱图。其中俄歇电子是多个电子参与的退激发过程产生的,在退激发过程中处于高能级的电子可以跃迁到这一空位同时释放能量,当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子出射成为俄歇电子。

2.为什么p、d、f轨道都只会有两个裂分峰?

这是由于电子自旋-轨道偶合效应导致的,根据总量子数j(j=lL+Sl,S=±1/2)而使电子能级出现裂分。例如对于s轨道,j=1/2,对于p轨道,j=1/2和j=3/2。需要注意的是,对于p、d、f轨道的两个裂分峰的峰面积是存在固定的比例。

3.每种元素的特征谱峰一定吗?

除了H、He和少量放射性元素以外,元素周期表中的大多数元素都有相应的XPS特征谱峰,而且XPS谱峰具有元素“指纹效应”,可以用于鉴定元素的成分。同时原子外层电子结构变化会导致XPS特征谱峰出现有规律的化学位移,所以XPS可以通过观测化学位移,提供与化学态、分子结构或官能团相关的信息。需要注意的是,物种中含有多种组分,可能会存在特征谱峰重叠的问题,所以在判断元素成分和化学态的时候,除了关注特征谱峰外,也需要观察相应元素其他谱峰。

4.EDS探测深度比较深,不是表面的信息?

是的。这是由于两个实验技术的原理不同所导致的,如下图所示:因为XPS检测是出射的光电子,光电子的非弹性平均自由程较小,所以提供的是表面信息;而EDS检测的是出射的特征X射线,而特征X射线的穿透能力可以达到微米,所以提供的是信息深度是微米级别的。这两种实验技术提供互补的信息,可以帮助我们深入了解样品性质。

以上仅为科学指南针对网上资料的整理,故此分享给大家,希望可以帮助大家对测试更了解,如有测试需求,可以和科学指南针联系,我们会给与您最准确的数据和最好的服务体验,惟祝科研工作者可以更轻松的工作。

免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。

关于XPS测试,今天就分享到这里。如果内容对你有帮助,希望大家不要吝啬点个赞哦,我们会继续给大家输出更多优质内容~

最后,祝大家科研顺利!如果你想了解更多关于XPS测试的知识,可以扫码关注下哦~

 

 

 

内容概要:文章以“智能网页数据标注工具”为例,深入探讨了谷歌浏览器扩展在毕业设计中的实战应用。通过开发具备实体识别、情感分类等功能的浏览器扩展,学生能够融合前端开发、自然语言处理(NLP)、本地存储与模型推理等技术,实现高效的网页数据标注系统。文中详细解析了扩展的技术架构,涵盖Manifest V3配置、内容脚本与Service Worker协作、TensorFlow.js模型在浏览器端的轻量化部署与推理流程,并提供了核心代码实现,包括文本选择、标注工具栏动态生成、高亮显示及模型预测功能。同时展望了多模态标注、主动学习与边缘计算协同等未来发展方向。; 适合人群:具备前端开发基础、熟悉JavaScript和浏览器机制,有一定AI模型应用经验的计算机相关专业本科生或研究生,尤其适合将浏览器扩展与人工智能结合进行毕业设计的学生。; 使用场景及目标:①掌握浏览器扩展开发全流程,理解内容脚本、Service Worker与弹出页的通信机制;②实现在浏览器端运行轻量级AI模型(如NER、情感分析)的技术方案;③构建可用于真实场景的数据标注工具,提升标注效率并探索主动学习、协同标注等智能化功能。; 阅读建议:建议结合代码实例搭建开发环境,逐步实现标注功能并集成本地模型推理。重点关注模型轻量化、内存管理与DOM操作的稳定性,在实践中理解浏览器扩展的安全机制与性能优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值