pytorch张量创建、张量复制

pytorch张量创建、张量复制

首先注意一点:在torch中,可导张量计算出的新张量也是可导的,新张量与原张量具有可导连接,那么原张量就不是叶子张量,新张量成了叶子张量。

创建方式一:torch.tensor()

torch.tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) → Tensor

torch.tensor只能从指定的数据创建,但是可以指定数据属性,是否可微分等属性。pin_memory是将张量放置到锁业内存中,所以这个张量只能被cpu使用。

import torch
a = [1, 2, 3]
b = torch.tensor(a, requires_grad=True, dtype=torch.float64)
创建方式二:torch.Tensor

按照形状创建,如果输入列表,就按照指定数据创建。

整数:torch.ShortTensor 16位,torch.IntTensor 32位,torch.LongTensor 64位

浮点:torch.FloatTensor=torch.Tensor 32位,torch.DoubleTensor 64位

注意:torch.Tensor(int1, int2,int3)会创建[int1, int2,int3]形状的张量,如果传入列表元组等,就会返回该列表元组张量。

import torch
torch.Tensor(3) 
'''tensor([-2.6853e+05,  1.9983e-42,  2.3694e-38])'''
torch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值