题目大意
给定一棵n个结点的树,和
每个询问,查询编号在[L,R]的结点中到给定点pos的最近距离是多少?
强制在线。
Data Constraint
n≤100000,m≤100000
题解
考虑点剖。先构出点剖树,每个结点维护一棵线段树。
然后对于每一个询问在点剖树上跑,每次查询线段树上对应的区间。
时间复杂度:O(nlog2n)
SRC
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std ;
#define N 100000 + 10
typedef long long ll ;
const int MAXN = 18 ;
struct Tree {
int Son[2] ;
int val ;
} T[100*N] ;
bool vis[N] ;
int f[N][MAXN] , Deep[N] ;
int Node[2*N] , Next[2*N] , Len[2*N] , Head[N] , tot ;
int Size[N] , Maxs[N] , Dis[N] , Dist[N] , fa[N] , Rt[N] ;
int Root , All , Minv , ret ;
int n , m , Cnt ;
ll ans ;
void link( int u , int v , int w ) {
Node[++tot] = v ;
Len[tot] = w ;
Next[tot] = Head[u] ;
Head[u] = tot ;
}
int NewNode() {
++ Cnt ;
T[Cnt].Son[0] = T[Cnt].Son[1] = 0 ;
T[Cnt].val = 0 ;
return Cnt ;
}
void Insert( int v , int l , int r , int x , int val ) {
if ( l == x && r == x ) {
T[v].val = val ;
return ;
}
int mid = (l + r) / 2 ;
if ( x <= mid ) {
if ( !T[v].Son[0] ) T[v].Son[0] = NewNode() ;
Insert( T[v].Son[0] , l , mid , x , val ) ;
} else {
if ( !T[v].Son[1] ) T[v].Son[1] = NewNode() ;
Insert( T[v].Son[1] , mid + 1 , r , x , val ) ;
}
T[v].val = min( T[T[v].Son[0]].val , T[T[v].Son[1]].val ) ;
}
void Search( int v , int l , int r , int x , int y ) {
if ( !v ) return ;
if ( l == x && r == y ) {
ret = min( ret , T[v].val ) ;
return ;
}
int mid = (l + r) / 2 ;
if ( y <= mid ) Search( T[v].Son[0] , l , mid , x , y ) ;
else if ( x > mid ) Search( T[v].Son[1] , mid + 1 , r , x , y ) ;
else {
Search( T[v].Son[0] , l , mid , x , mid ) ;
Search( T[v].Son[1] , mid + 1 , r , mid + 1 , y ) ;
}
}
void GetSize( int x , int F ) {
Size[x] = Maxs[x] = 1 ;
for (int p = Head[x] ; p ; p = Next[p] ) {
if ( Node[p] == F || vis[Node[p]] ) continue ;
GetSize( Node[p] , x ) ;
Size[x] += Size[Node[p]] ;
if ( Size[Node[p]] > Maxs[x] ) Maxs[x] = Size[Node[p]] ;
}
}
void GetRoot( int x , int F ) {
Maxs[x] = max( Maxs[x] , Size[All] - Maxs[x] ) ;
if ( Maxs[x] < Minv ) Minv = Maxs[x] , Root = x ;
for (int p = Head[x] ; p ; p = Next[p] ) {
if ( Node[p] == F || vis[Node[p]] ) continue ;
GetRoot( Node[p] , x ) ;
}
}
void DFS( int x , int F ) {
for (int p = Head[x] ; p ; p = Next[p] ) {
if ( vis[Node[p]] || Node[p] == F ) continue ;
Dis[Node[p]] = Dis[x] + Len[p] ;
Insert( Rt[Root] , 1 , n , Node[p] , Dis[Node[p]] ) ;
DFS( Node[p] , x ) ;
}
}
void DIV( int x , int F ) {
GetSize( x , 0 ) ;
Minv = 0x7FFFFFFF ;
Root = All = x ;
GetRoot( x , 0 ) ;
vis[Root] = 1 ;
fa[Root] = F ;
Rt[Root] = ++ Cnt ;
Insert( Rt[Root] , 1 , n , Root , 0 ) ;
Dis[Root] = 0 ;
for (int p = Head[Root] ; p ; p = Next[p] ) {
if ( vis[Node[p]] ) continue ;
Dis[Node[p]] = Len[p] ;
Insert( Rt[Root] , 1 , n , Node[p] , Dis[Node[p]] ) ;
DFS( Node[p] , Root ) ;
}
int now = Root ;
for (int p = Head[Root] ; p ; p = Next[p] ) {
if ( vis[Node[p]] ) continue ;
DIV( Node[p] , now ) ;
}
}
void Pre( int x ) {
for (int p = Head[x] ; p ; p = Next[p] ) {
if ( Node[p] == f[x][0] ) continue ;
f[Node[p]][0] = x ;
Deep[Node[p]] = Deep[x] + 1 ;
Dist[Node[p]] = Dist[x] + Len[p] ;
Pre( Node[p] ) ;
}
}
int LCA( int x , int y ) {
if ( Deep[x] < Deep[y] ) swap( x , y ) ;
for (int i = MAXN - 1 ; i >= 0 ; i -- ) {
if ( Deep[f[x][i]] >= Deep[y] ) x = f[x][i] ;
}
if ( x == y ) return x ;
for (int i = MAXN - 1 ; i >= 0 ; i -- ) {
if ( f[x][i] != f[y][i] ) x = f[x][i] , y = f[y][i] ;
}
return f[x][0] ;
}
int Calc( int u , int v ) {
return Dist[u] + Dist[v] - 2 * Dist[LCA(u,v)] ;
}
int main() {
scanf( "%d" , &n ) ;
for (int i = 1 ; i < n ; i ++ ) {
int x , y , d ;
scanf( "%d%d%d" , &x , &y , &d ) ;
link( x , y , d ) ;
link( y , x , d ) ;
}
Deep[1] = 1 ;
Pre( 1 ) ;
for (int j = 1 ; j < MAXN ; j ++ ) {
for (int i = 1 ; i <= n ; i ++ ) f[i][j] = f[f[i][j-1]][j-1] ;
}
T[0].val = 0x7FFFFFFF ;
DIV( 1 , 0 ) ;
scanf( "%d" , &m ) ;
ans = 0 ;
for (int i = 1 ; i <= m ; i ++ ) {
int L , R , pos ;
scanf( "%d%d%d" , &L , &R , &pos ) ;
pos ^= ans ;
ans = 1e15 ;
if ( pos >= L && pos <= R ) {
ans = 0 ;
printf( "0\n" ) ;
continue ;
}
int now = pos ;
while ( now ) {
ret = 0x7FFFFFFF ;
Search( Rt[now] , 1 , n , L , R ) ;
ans = min( ans , (ll)Calc( pos , now ) + ret ) ;
now = fa[now] ;
}
printf( "%lld\n" , ans ) ;
}
return 0 ;
}
以上.