Time Limit: 3 second(s) | Memory Limit: 64 MB |
An increasing subsequence from a sequence A1, A2 ... An is defined by Ai1, Ai2 ... Aik, where the following properties hold
1. i1 < i2 < i3 < ... < ik and
2. Ai1 < Ai2 < Ai3 < ... < Aik
Now you are given a sequence, you have to find the number of all possible increasing subsequences.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case contains an integer n (1 ≤ n ≤ 105) denoting the number of elements in the initial sequence. The next line will contain n integers separated by spaces, denoting the elements of the sequence. Each of these integers will be fit into a 32 bit signed integer.
Output
For each case of input, print the case number and the number of possible increasing subsequences modulo 1000000007.
Sample Input | Output for Sample Input |
3 3 1 1 2 5 1 2 1000 1000 1001 3 1 10 11 | Case 1: 5 Case 2: 23 Case 3: 7 |
Notes
1. For the first case, the increasing subsequences are (1), (1, 2), (1), (1, 2), 2.
2. Dataset is huge, use faster I/O methods.
题目大意:找出一个序列中的所有上升序列,很容易想到DP,直接给代码,注释里有说明:
/**
** 构造n的状态空间, dp[i]表示以i结尾的所有上升序列的个数
** 转移为 dp[i] = 1+segma(dp[k])| 0<=k<i && arr[k]<arr[i]
** 不用树状数组优化的话转移是O(n)的
** 用树状数组优化以后转移就是O(logn)的,需要离散化
**/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int MAXN = 100010;
int c[MAXN],arr[MAXN],pt[MAXN],t,n,m;
LL ans,MOD = 1000000007ll,dp[MAXN];
void init(){
memset(c,0,sizeof(c));
ans = 0;
}
int lowbit(int x){
return x&(-x);
}
int sum(int pos){
int s = 0;
while(pos>0){
s = (s+c[pos])%MOD;//不取模的话会溢出
pos-=lowbit(pos);
}
return s;
}
void add(int pos,int val,int n){
while(pos<=n){
c[pos] = (c[pos]+val)%MOD;//不取模的话会溢出
pos+=lowbit(pos);
}
}
//离散化
void disc(){
memcpy(pt,arr,sizeof(arr));
sort(pt,pt+n);
int i;
for(i=1,m=1;i<n;i++){
if(pt[i]!=pt[i-1])pt[m++]=pt[i];
}
}
int search(int k){
int l=0,r=m-1,m;
while(l<=r){
m = (l+r)>>1;
if(pt[m]==k)return m;
else if(k<pt[m])r=m-1;
else l=m+1;
}
return -1;
}
int main(){
scanf("%d",&t);
for(int cas=1;cas<=t;cas++){
init();
scanf("%d",&n);
for(int i=0;i<n;i++)scanf("%d",&arr[i]);
disc();
dp[0] = 1;ans = 1;
add(search(arr[0])+1,dp[0],m);
for(int i=1;i<n;i++){
int pos = search(arr[i])+1;
dp[i] = (sum(pos-1)+1)%MOD;
ans = (ans+dp[i])%MOD;
add(pos,dp[i],m);
}
printf("Case %d: %lld\n",cas,ans);
}
return 0;
}