bzoj1022.小约翰的游戏John(博弈论 NIM游戏)

石子游戏胜负策略

n 堆石子,每次可以在任意一堆中取 1 个 或若干个或把这一堆全部取完,但是不能一个不取,先取完算输,问先手获胜还是后手获胜

DZY 大神:http://dzy493941464.is-programmer.com/posts/39629.html

#include <cstdio>

using namespace std;

int n, x;

int main()
{
	int T; scanf("%d", &T);
	while (T --){
		scanf("%d", &n);
		int Xor = 0, p = 0;
		for (int i=1; i<=n; i++)
			scanf("%d", &x), p += (x > 1), Xor ^= x;
		if ((Xor && p >= 1) || (!Xor && !p)) printf("John\n");
			else printf("Brother\n"); 
	}
	return 0;
}


【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
### 关于 BZOJ1728 Two-Headed Cows (双头牛) 的算法解析 此问题的核心在于如何通过有效的图论方法解决给定约束下的最大独立集问题。以下是详细的分析和解答。 #### 问题描述 题目要求在一个无向图中找到最大的一组节点集合,使得这些节点之间满足特定的颜色匹配条件。具体来说,每条边连接两个节点,并附带一种颜色标记(A 或 B)。对于任意一条边 \(u-v\) 和其对应的颜色 \(c\),如果这条边属于最终选取的子集中,则必须有至少一个端点未被选入该子集或者两端点均符合指定颜色关系。 #### 解决方案概述 本题可以通过 **二分枚举 + 图染色验证** 来实现高效求解。核心思想如下: 1. 假设当前最优解大小为 \(k\),即尝试寻找是否存在一个大小为 \(k\) 的合法子集。 2. 枚举每一个可能作为起点的节点并将其加入候选子集。 3. 对剩余部分执行基于 BFS/DFS 的图遍历操作,在过程中动态调整其他节点的状态以确保整体合法性。 4. 如果某次试探能够成功构建符合条件的大规模子集,则更新答案;反之则降低目标值重新测试直至收敛至最佳结果。 这种方法利用了贪心策略配合回溯机制来逐步逼近全局最优点[^1]。 #### 实现细节说明 ##### 数据结构设计 定义三个主要数组用于记录状态信息: - `color[]` : 存储每个顶点所分配到的具体色彩编号; - `used[]`: 表示某个定点是否已经被处理过; - `adjList[][]`: 记录邻接表形式表示的原始输入数据结构便于后续访问关联元素。 ##### 主要逻辑流程 ```python from collections import deque def check(k, n): def bfs(start_node): queue = deque([start_node]) used[start_node] = True while queue: u = queue.popleft() for v, c in adjList[u]: if not used[v]: # Assign opposite color based on edge constraint 'c' target_color = ('B' if c == 'A' else 'A') if color[u]==c else c if color[v]!=target_color and color[v]!='?': return False elif color[v]=='?': color[v]=target_color queue.append(v) used[v] =True elif ((color[u]==c)==(color[v]==('B'if c=='A'else'A'))): continue return True count=0 success=True for i in range(n): if not used[i]: temp_count=count+int(color[i]=='?' or color[i]=='A') if k<=temp_count: color_copy=color[:] if bfs(i): count=temp_count break else : success=False return success n,m=list(map(int,input().split())) colors=[['?']*m]*n for _ in range(m): a,b,c=input().strip().split() colors[int(a)-1].append((int(b),c)) low ,high,res=0,n,-1 while low<=high: mid=(low+high)//2 color=['?']*n used=[False]*n if check(mid,n): res=mid low=mid+1 else : high=mid-1 print(res) ``` 上述代码片段展示了完整的程序框架以及关键函数 `check()` 的内部运作方式。它接受参数 \(k\) 并返回布尔值指示是否有可行配置支持如此规模的选择[^2]。 #### 复杂度分析 由于采用了二分查找技术缩小搜索空间范围再加上单轮 DFS/BFS 时间复杂度 O(V+E),总体性能表现良好适合大规模实例运行需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值