普通人如何缓解AI焦虑?

今天看到一个职场小伙伴的对于如今AI泛滥的抱怨,挺有意思。

图片

面对AI绘画技术带来的职业焦虑,这是一个普遍存在的问题,不仅限于游戏行业,许多创意行业都面临着类似的挑战。

以下是一些建议,希望能帮助你缓解焦虑并找到应对之道:

首先,要认识到AI技术的发展是不可阻挡的趋势。

它确实能够提高工作效率,甚至在某种程度上模仿人类的创造力。AI辅助设计是大势所趋,打不过,只能加入。

但AI目前还无法完全替代人类的情感和经验积累,尤其是在情感表达、文化敏感性和深度创意方面。

因此,不要过于悲观,而是积极寻找与AI共存的方式。

既然AI擅长快速生成大量图像,那么你可以将精力集中在AI难以替代的领域。

比如,加强自己的艺术修养、提高手绘技能、深入研究角色设定和故事背景,让你的作品更加有深度、有灵魂。这些独特的价值是AI目前难以复制的。

另外,与其抗拒AI,不如主动学习它。AI取代不了美术师,但不会AI的低端美术师,肯定是蹦跶不了多久了……

了解AI绘画的原理、技巧和应用场景,可以让你更好地与AI协作,甚至利用AI来辅助自己的创作。

比如,你可以用AI快速生成一些草图或概念图,然后再进行精细化的手绘或调整,这样既能提高效率,又能保持作品的独特性。

与策划团队保持开放而专业的沟通非常重要。可以提议定期召开跨部门会议,明确各自的职责和边界。

强调原画设计在游戏开发中的核心价值,以及AI图像无法替代的艺术性和故事性。

同时,也可以分享一些AI无法完成的优秀作品,增强团队的信心。

多关注游戏行业的最新动态和趋势,了解其他公司是如何应对AI技术的。

参加行业会议、研讨会或在线课程,与其他从业者交流心得和经验。

这样不仅可以拓宽你的视野,还能让你保持对行业的敏感度和适应性。

考虑到未来的职业发展,你可以开始规划自己的长期目标。

比如,成为某个领域的专家、转型为艺术指导或创意总监等。

同时,也可以考虑提升自己的学历或技能水平,以增强自己的竞争力。

面对职业焦虑时,别忘了关注自己的身心健康。

合理安排工作和休息时间,保持良好的生活习惯。

适当进行体育锻炼、阅读书籍或参加社交活动,以缓解压力并提升生活质量。

相信通过这些努力,大部分人都能够很好的缓解AI焦虑了。

内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
内容概要:本文围绕电力系统状态估计中的异常检测与分类展开,重点介绍基于Matlab代码实现的相关算法与仿真方法。文章详细阐述了在状态估计过程中如何识别和分类量测数据中的异常值,如坏数据、拓扑错误和参数误差等,采用包括残差分析、加权最小二乘法(WLS)、标准化残差检测等多种经典与现代检测手段,并结合实际算例验证方法的有效性。同时,文档提及多种状态估计算法如UKF、AUKF、EUKF等在负荷突变等动态场景下的应用,强调异常处理对提升电力系统运行可靠性与安全性的重要意义。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的高校研究生、科研人员及从事电力系【状态估计】电力系统状态估计中的异常检测与分类(Matlab代码实现)统自动化相关工作的工程技术人员。; 使用场景及目标:①掌握电力系统状态估计中异常数据的产生机制与分类方法;②学习并实现主流异常检测算法,提升对状态估计鲁棒性的理解与仿真能力;③服务于科研项目、课程设计或实际工程中的数据质量分析环节; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,配合电力系统状态估计的基本理论进行深入理解,重点关注异常检测流程的设计逻辑与不同算法的性能对比,宜从简单案例入手逐步过渡到复杂系统仿真。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值