53.最大子序和
一、题目描述
给定一个整数数组nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为O(n)的解法,尝试使用更为精妙的分治法求解。
二、解法一:暴力
思路:
将所有连续子数组的和都求出来,取最大值。
代码:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int max = INT_MIN;
int len = int(nums.size());
for (int i = 0; i < len; i++)
{
int sum = 0;
for (int j = i; j < len; j++)
{
sum += nums[j];
if (sum > max)
max = sum;
}
}
return max;
}
};
三、解法二:动态规划
思路:
用dp[i]表示nums中以nums[i]结尾的最大子序和,其转移方程为:
d p [ i ] = m a x { d p [ i − 1 ] + n u m s [ i ] , n u m s [ i ] } dp[i]=max\{dp[i-1]+nums[i],nums[i]\} dp[i]=max{dp[i−1]+nums[i],nums[i]}
最终要求的答案是:
m a x { d p [ i ] } max\{dp[i]\} max{dp[i]}
代码:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT_MIN;
int len = int(nums.size());
//dp[i]表示nums中以nums[i]结尾的最大子序和
vector<int> dp(len);
dp[0] = nums[0];
res = dp[0];
for (int i = 1; i < len; i++)
{
dp[i] = max(dp[i - 1] + nums[i], nums[i]);
res = max(res, dp[i]);
}
return res;
}
};
四、解法三:分治法
思路:
取数组中心点为中心,最大子序要么全在左区间,要么全在右区间,要么跨中心。对于跨中心的情况,以中心点为起点,分别向左和向右进行遍历,找到两侧的最大子序和,再相加即可。
代码:
class Solution {
public:
int findMidSum(vector<int> &nums, int left, int mid, int right)
{
int leftSum = INT_MIN;
int sum = 0;
for (int i = mid; i >= left; i--)
{
sum += nums[i];
leftSum = max(leftSum, sum);
}
int rightSum = INT_MIN;
sum = 0;
for (int i = mid + 1 ; i <= right; i++)
{
sum += nums[i];
rightSum = max(rightSum, sum);
}
return leftSum + rightSum;
}
int get(vector<int> &nums, int left, int right)
{
if (left == right)
return nums[left];
int mid = (left + right) / 2;
int leftSum = get(nums, left, mid);
int rightSum = get(nums, mid + 1, right);
int midSum = findMidSum(nums, left, mid, right);
int ret = max(leftSum, rightSum);
ret = max(ret, midSum);
return ret;
}
int maxSubArray(vector<int>& nums) {
int res = INT_MIN;
int len = int(nums.size());
res = get(nums, 0, len - 1);
return res;
}
};