import tensorflow as tf
a = tf.constant([[2,3]])
a1 = tf.constant([2,3])
b = tf.constant([[0,1],[2,3]])
x = tf.constant([[[0,1],[2,3],[1,3]],[[4,5],[6,7],[4,7]]])
y = tf.constant([[[0,1,0],[2,3,1]],[[4,5,1],[6,7,2]]])
z=tf.matmul(y, x)#最里面矩阵相乘(要求一一对应,没有广播性)
c = tf.matmul(a, b)# 矩阵乘法
d = tf.multiply(a, b)# 对应相乘
e = tf.multiply(a1, b)# 对应相乘with tf.Session()as sess:print(sess.run(c))print(sess.run(d))print(sess.run(e))print(sess.run(z))
tf.transpose(
a,
perm=None,
name='transpose',
conjugate=False)
说明:
这个函数主要适用于交换输入张量的不同维度,如果输入张量是二维,就相当是转置。
dimension_n是整数,如果张量是三维,就是用0,1,2来表示
例子:
import tensorflow as tf
b = tf.constant([[0,1],[2,3]])
c= tf.transpose(b,[1,0])
x = tf.constant([[[0,1],[2,3],[1,3]],[[4,5],[6,7],[4,7]]])
y = tf.transpose(x,[2,0,1])with tf.Session()as sess:print(sess.run(c))print(sess.run(y))