转载请注明出处,谢谢http://blog.youkuaiyun.com/acm_cxlove/article/details/7854526 by---cxlove
题目:给出N,M,找出1-N中有多少个数X满足gcd(X,N)>=M
http://acm.uestc.edu.cn/problem.php?pid=1552
枚举所有可能的M,然后求出phi(N/M)
即最后的解为sigma(phi(N/P)) (P|N&& P>=M)
直接暴力搞搞
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<string>
#include<vector>
#include<algorithm>
#include<map>
#include<set>
#define maxn 200005
#define eps 1e-8
#define inf 1<<30
#define LL long long
#define zero(a) fabs(a)<eps
#define MOD 1000000007
#define N 47000
using namespace std;
bool flag[N]={0};
int prime[N],cnt=0;
int fac[N][2],tot;
void Prime(){
for(int i=2;i<N;i++){
if(flag[i]) continue;
prime[cnt++]=i;
for(int j=2;j*i<N;j++)
flag[i*j]=true;
}
}
void Split(int n){
tot=0;
for(int i=0;i<cnt&&prime[i]*prime[i]<=n;i++){
if(n%prime[i]==0){
fac[tot][0]=prime[i];
fac[tot][1]=0;
while(n%prime[i]==0){
fac[tot][1]++;
n/=prime[i];
}
tot++;
}
}
if(n>1) {fac[tot][0]=n;fac[tot++][1]=1;}
}
int Get_Eular(int n){
int ret=1;
for(int i=0;i<cnt&&prime[i]*prime[i]<=n;i++){
if(n%prime[i]==0){
ret*=prime[i]-1;
n/=prime[i];
while(n%prime[i]==0){
ret*=prime[i];
n/=prime[i];
}
}
}
if(n>1) ret*=n-1;
return ret;
}
int ans;
int t,n,m;
void dfs(int idx,int num){
if(idx>=tot){
if(num<m) return;
ans+=Get_Eular(n/num);
return;
}
int tmp=1;
for(int i=0;i<=fac[idx][1];i++,tmp*=fac[idx][0])
dfs(idx+1,num*tmp);
}
int main(){
Prime();
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
Split(n);
ans=0;
dfs(0,1);
printf("%d\n",ans);
}
return 0;
}