转载请注明出处,谢谢http://blog.youkuaiyun.com/acm_cxlove/article/details/7854526 by---cxlove
每一个子串一定是某个后缀的前缀,那么问题便等价于求所有后缀之间的不相同的前缀个数。我们按sa的顺序来考虑,当加入sa[k]的时候,sa[k]这个后缀的长度为n-sa[k],那么便有n-sa[k]个前缀,但是由heigh数组可知sa[k]与sa[k-1]有height[k]个前缀是相同的,所以要除去,最终的答案便是sigma(n-sa[k]+height[k])
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<string>
#include<vector>
#include<algorithm>
#include<map>
#include<set>
#define maxn 50005
#define eps 1e-8
#define zero(a) fabs(a)<eps
using namespace std;
//以下为倍增算法求后缀数组
int wa[maxn],wb[maxn],wv[maxn],Ws[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b]&&r[a+l]==r[b+l];}
void da(const char *r,int *sa,int n,int m){
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++) Ws[i]=0;
for(i=0;i<n;i++) Ws[x[i]=r[i]]++;
for(i=1;i<m;i++) Ws[i]+=Ws[i-1];
for(i=n-1;i>=0;i--) sa[--Ws[x[i]]]=i;
for(j=1,p=1;p<n;j*=2,m=p){
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) Ws[i]=0;
for(i=0;i<n;i++) Ws[wv[i]]++;
for(i=1;i<m;i++) Ws[i]+=Ws[i-1];
for(i=n-1;i>=0;i--) sa[--Ws[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
}
return;
}
int sa[maxn],Rank[maxn],height[maxn];
//求height数组
void calheight(const char *r,int *sa,int n){
int i,j,k=0;
for(i=1;i<=n;i++) Rank[sa[i]]=i;
for(i=0;i<n;height[Rank[i++]]=k)
for(k?k--:0,j=sa[Rank[i]-1];r[i+k]==r[j+k];k++);
return;
}
char str[maxn];
int slove(int n){
int sum=0;
for(int i=1;i<=n;i++)
sum+=n-sa[i]-height[i];
return sum;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%s",str);
da(str,sa,strlen(str)+1,130);
calheight(str,sa,strlen(str));
for(int i=1;i<=strlen(str);i++)
printf("%d %d\n",sa[i],height[i]);
printf("%d\n",slove(strlen(str)));
}
return 0;
}
后缀数组与高度数组详解
本文详细介绍了如何使用后缀数组和高度数组解决字符串中子串和前缀的问题,并给出了具体的实现代码。通过倍增算法求解后缀数组,进而计算高度数组,最后统计所有后缀间的不同前缀数量。
3056





