【BFS】Knight Moves

本文介绍了一个关于骑士在国际象棋棋盘上寻找从一点到另一点最短路径的问题,并提供了一个使用宽度优先搜索算法的解决方案。该算法通过初始化棋盘状态并跟踪已访问位置来确定两点间的最少移动次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Knight Moves

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2898    Accepted Submission(s): 1822


Problem Description
A friend of you is doing research on the Traveling Knight Problem (TKP) where you are to find the shortest closed tour of knight moves that visits each square of a given set of n squares on a chessboard exactly once. He thinks that the most difficult part of the problem is determining the smallest number of knight moves between two given squares and that, once you have accomplished this, finding the tour would be easy.
Of course you know that it is vice versa. So you offer him to write a program that solves the "difficult" part. 

Your job is to write a program that takes two squares a and b as input and then determines the number of knight moves on a shortest route from a to b. 
 

Input
The input file will contain one or more test cases. Each test case consists of one line containing two squares separated by one space. A square is a string consisting of a letter (a-h) representing the column and a digit (1-8) representing the row on the chessboard. 
 

Output
For each test case, print one line saying "To get from xx to yy takes n knight moves.". 
 

Sample Input
  
  
e2 e4 a1 b2 b2 c3 a1 h8 a1 h7 h8 a1 b1 c3 f6 f6
 

Sample Output
  
  
To get from e2 to e4 takes 2 knight moves. To get from a1 to b2 takes 4 knight moves. To get from b2 to c3 takes 2 knight moves. To get from a1 to h8 takes 6 knight moves. To get from a1 to h7 takes 5 knight moves. To get from h8 to a1 takes 6 knight moves. To get from b1 to c3 takes 1 knight moves. To get from f6 to f6 takes 0 knight moves.


题目是很简单的宽度优先搜索,唯一要注意的就是每次都要初始化啊。。

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
struct point
{
    int x,y;
    int moves;
};
queue<point> q;
bool map[10][10];
int dir[8][2]= {{-2,-1},{-2,1},{-1,2},{1,2},{2,1},{2,-1},{1,-2},{-1,-2}};
int sx,sy,ex,ey;
int bfs(struct point s)
{
    struct point head,temp;
    int x,y;
    map[s.x][s.y]=true;
    q.push(s);
    for(; !q.empty();)
    {
        head=q.front();
        q.pop();
        if(head.x==ex&&head.y==ey) return head.moves;
        for(int j=0; j<8; ++j)
        {
            x=head.x+dir[j][0];
            y=head.y+dir[j][1];
            if(x>0&&x<=8&&y>0&&y<=8&&map[x][y]==false)
            {
                map[x][y]=true;
                temp.x=x;
                temp.y=y;
                temp.moves=head.moves+1;
                q.push(temp);
            }
        }
    }
    return -1;
}
int main()
{
    char start[5],end[5];
    int ans,i,j;
    struct point head;
    for(; scanf("%s%s",start,end)!=EOF;)
    {
        sx=start[0]-'a'+1;
        sy=start[1]-'0';
        ex=end[0]-'a'+1;
        ey=end[1]-'0';
        head.moves=0;
        head.x=sx;
        head.y=sy;
        for(; !q.empty(); q.pop());
        memset(map,false,sizeof(map));
        printf("To get from %s to %s takes %d knight moves.\n",start,end,bfs(head));
    }
    return 0;
}
来源: http://blog.youkuaiyun.com/ACM_Ted


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值