KiKi's K-Number
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3235 Accepted Submission(s): 1449
Problem Description
For the k-th number, we all should be very familiar with it. Of course,to kiki it is also simple. Now Kiki meets a very similar problem, kiki wants to design a container, the container is to support the three operations.
Push: Push a given element e to container
Pop: Pop element of a given e from container
Query: Given two elements a and k, query the kth larger number which greater than a in container;
Although Kiki is very intelligent, she can not think of how to do it, can you help her to solve this problem?
Push: Push a given element e to container
Pop: Pop element of a given e from container
Query: Given two elements a and k, query the kth larger number which greater than a in container;
Although Kiki is very intelligent, she can not think of how to do it, can you help her to solve this problem?
Input
Input some groups of test data ,each test data the first number is an integer m (1 <= m <100000), means that the number of operation to do. The next m lines, each line will be an integer p at the beginning, p which has three values:
If p is 0, then there will be an integer e (0 <e <100000), means press element e into Container.
If p is 1, then there will be an integer e (0 <e <100000), indicated that delete the element e from the container
If p is 2, then there will be two integers a and k (0 <a <100000, 0 <k <10000),means the inquiries, the element is greater than a, and the k-th larger number.
If p is 0, then there will be an integer e (0 <e <100000), means press element e into Container.
If p is 1, then there will be an integer e (0 <e <100000), indicated that delete the element e from the container
If p is 2, then there will be two integers a and k (0 <a <100000, 0 <k <10000),means the inquiries, the element is greater than a, and the k-th larger number.
Output
For each deletion, if you want to delete the element which does not exist, the output "No Elment!". For each query, output the suitable answers in line .if the number does not exist, the output "Not Find!".
Sample Input
5 0 5 1 2 0 6 2 3 2 2 8 1 7 0 2 0 2 0 4 2 1 1 2 1 2 2 1 3 2 1 4
Sample Output
No Elment! 6 Not Find! 2 2 4 Not Find!
Source
Recommend
gaojie
思路: 树状数组
分析:
1 题目给定三种操作: 0 x 表示把x插入容器 ; 1 x 表示删除一个x如果没有x则输出 No Elment! ; 2 a k 表示比a大的数中的第k大的数 如果没有输出No Find!
2 我们先来看一下树状数组的功能,树状数组能够在在logN的时间内求出某段区间的和,那么对于2 a k这种操作我们可以看成是求是否有x满足[a,x]这个区间的和为k,那么这样就变成了树状数组的求和问题了。那我们再来考虑插入和删除操作,插入一个x相当于更新树状数组,删除x注意多个的情况
3 通过第2点的分析我们知道我们主要是否有区间[a , x]的和为k,那么我们知道对于树状数组来说从a开始的区间的和是递增的,因此我们可以通过二分答案,然后去求出满足的x
4 那么我们来分析一下时间复杂度,枚举操作为O(n),每次操作的最坏时间为O(logN),因此时间复杂度为O(n*logN);
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN = 100010;
int n;
bool vis[MAXN];
int treeNum[MAXN];
int lowbit(int x){
return x&(-x);
}
int getSum(int x){
int sum = 0;
while(x){
sum += treeNum[x];
x -= lowbit(x);
}
return sum;
}
void add(int x , int val){
while(x < MAXN){
treeNum[x] += val;
x += lowbit(x);
}
}
int search(int l , int x){
int left = l+1;
int right = MAXN-1;
while(left <= right){
int mid = (left+right)>>1;
int sum = getSum(mid)-getSum(l);
if(sum == x){
if(vis[mid])
return mid;
right = mid-1;
}
else if(sum < x)
left = mid+1;
else{
if(getSum(mid-1)-getSum(l) < x)
return mid;
right = mid-1;
}
}
return -1;
}
void solve(){
int mark , x , y;
memset(vis , false , sizeof(vis));
memset(treeNum , 0 , sizeof(treeNum));
for(int i = 0 ; i < n ; i++){
scanf("%d" , &mark);
if(mark == 0){
scanf("%d" , &x);
add(x , 1);
vis[x] = true;
}
else if(mark == 1){
scanf("%d" , &x);
int sum = getSum(x)-getSum(x-1);
if(sum == 0)
puts("No Elment!");
else{
add(x , -1);
if(sum == 1)
vis[x] = false;
}
}
else{
scanf("%d%d" , &x , &y);
int ans = search(x , y);
if(ans == -1)
puts("Not Find!");
else
printf("%d\n" , ans);
}
}
}
int main(){
while(scanf("%d" , &n) != EOF)
solve();
return 0;
}