RAG相关理论知识与经验整理。
谈到大模型在各垂直领域中的应用,一定离不开RAG,本系列开始分享一些RAG相关使用经验,可以帮助大家在效果不理想的时候找到方向排查或者优化。
本系列以医疗领域为例,用面试题的形式讲解RAG相关知识,开始RAG系列的分享~
本篇主要是理论知识与经验;后续会结合最新的优化方法给出详细的优化代码,和实践中衍生的思考。
下面是本篇的快捷目录。
1. RAG思路
2. RAG中的prompt模板
3. 检索架构设计
一、RAG思路
这里有一张经典的图:
具体步骤是:
-
加载文件
-
读取文本
-
文本分割
-
文本向量化
-
问句向量化
-
在文本向量中匹配出与问句向量最相似的top k个
-
匹配出的文本作为上下文和问题一起添加到 prompt 中
-
提交给 LLM 生成回答
二、RAG中的prompt模板
已知信息:{context}
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。
问题是:{question}
其中 {context} 就是检索出来的文档。
三、检索架构设计
基于LLM的文档对话架构分为两部分,先检索,后推理。重心在检索(推荐系统),推理一般结合langchain交给LLM即可。
因此接下来主要是检索架构设计内容。
1. 检索要求
-
提高召回率
-
能减少无关信息
-
速度快
2. 检索逻辑
拿到需要建立检索库的文本,将其组织成二级索引,第一级索引是 [关键信息],第二级是 [原始文本],二者一一映射。 [关键信息]用于加快检索, [原始文本]用于返回给prompt得到结果。
向量检索基于关键信息embeddig,参与相似度计算,检索完成后基于关键信息与原始文本的映射,将原始文本内容作为 {context} 返回。
主要架构图如下:
3. 切分与关键信息抽取
关键信息抽取前需要先对拿到的文档进行切分。
其实文档切分粒度比较难把控,粒度过小的话跨段落语义信息可能丢失,粒度过大噪声又太多。因此在切分时主要是按语义切分。
因此拿到文档先切分再抽取关键信息,可根据实际情况考虑是否进行文章、段落、句子更细致粒度的关键信息抽取。
下面具体来讲讲方法和经验:
1)切分
- 基于NLP篇章分析(discourse parsing)工具
提取出段落之间的主要关系,把所有包含主从关系的段落合并成一段。这样对文章切分完之后保证每一段在说同一件事情。
- 基于BERT中NSP(next sentence prediction)的训练任务
基于NSP(next sentence prediction)任务。设置相似度阈值t,从前往后依次判断相邻两个段落的相似度分数是否大于t,如果大于则合并,否则断开。
2)关键信息抽取
-
直接存储以标点切分的句子:只适用于向量库足够小(检索效率高)且query也比较类似的情况。
-
传统NLP工具:成分句法分析(constituency parsing)可以提取核心部分(名词短语、动词短语……);命名实体识别(NER)可以提取重要实体(货币名、人名、企业名……)。
-
生成关键词模型:类似于ChatLaw中的keyLLM,,即:训练一个生成关键词的模型。在医疗领域中,这个方法是目前比较靠谱且能通用的方法。
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
⑤AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。
⑥AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
如果二维码失效,可以点击下方链接,一样的哦
【优快云大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~