既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
循环神经网络(RNN)是一种能够捕捉序列数据中时间依赖性的网络结构。但是,传统的RNN存在一些严重的问题:
- 梯度消失问题(Vanishing Gradient Problem): 当处理长序列时,RNN在反向传播时梯度可能会接近零,导致训练缓慢甚至无法学习。
- 梯度爆炸问题(Exploding Gradient Problem): 与梯度消失问题相反,梯度可能会变得非常大,导致训练不稳定。
- 长依赖性问题: RNN难以捕捉序列中相隔较远的依赖关系。
由于这些问题,传统的RNN在许多应用中表现不佳,尤其是在处理长序列数据时。
LSTM的提出背景
长短时记忆网络(LSTM)是一种特殊类型的RNN,由Hochreiter和Schmidhuber于1997年提出,目的是解决传统RNN的问题。
- 解决梯度消失问题: 通过引入“记忆单元”,LSTM能够在长序列中保持信息的流动。
- 捕捉长依赖性: LSTM结构允许网络捕捉和理解长序列中的复杂依赖关系。
- 广泛应用: 由于其强大的性能和灵活性,LSTM已经被广泛应用于许多序列学习任务,如语音识别、机器翻译和时间序列分析等。
LSTM的提出不仅解决了RNN的核心问题,还开启了许多先前无法解决的复杂序列学习任务的新篇章。
2. LSTM的基础理论
2.1 LSTM的数学原理
长短时记忆网络(LSTM)是一种特殊的循环神经网络,它通过引入一种称为“记忆单元”的结构来克服传统RNN的缺点。下面是LSTM的主要组件和它们的功能描述。