LangChain之Agent代理(上)

Agent代理

概述

Agent代理的核心思想是使用语言模型来选择要采取的一系列动作。在链中,动作序列是硬编码的。在代理中,语言模型用作推理引擎来确定要采取哪些动作以及按什么顺序进行。

因此,在LangChain中,Agent代理就是使用语言模型作为推理引擎,让模型自主判断、调用工具和决定下一步行动。

Agent代理像是一个多功能接口,能够使用多种工具,并根据用户输入决定调用哪些工具,同时能够将一个工具的输出数据作为另一个工具的输入数据。

分类

根据几个维度对所有可用的代理进行分类:

makefile复制代码模型类型:代理适用于那类模型。Chat(接收消息,输出消息)、LLM(接收字符串,输出字符串)

聊天历史: 代理是否支持聊天历史。如果支持,这意味着它可以用作聊天机器人。如果不支持,那么它更适合单一任务。

多输入工具:  代理是否支持具有多个输入的工具。如果一个工具只需要单个输入,那么LLM通常更容易知道如何调用它。

并行函数调用: 让LLM同时调用多个工具可以大大提高代理的效率

所需模型参数: 代理是否需要模型支持任何其他参数。某些代理类型利用了OpenAI 函数调用等功能,这些功能需要其他模型参数。如果不需要,则意味着一切都通过提示完成
代理名称 模型类型 聊天历史 多输入工具 并行函数调用 所需模型参数 描述 Agent
OpenAI tools Chat tools OpenAI将调用单个函数的能力称为 函数,将调用一个或多个函数的能力称为工具。 create_openai_tools_agent
OpenAI functions Chat x functions 使用Op0nAl函数集合的代理。已弃用转而使用OpenAI tools create_openai_functions_agent
XML Agent LLM x x 某些语言模型(例如 Anthropic 的 Claude)特别擅长推理/编写 XML。 create_xml_agent
Structured chat Chat x 使用结构化工具集的代理 create_structured_chat_agent
JSON Chat Agent Chat x x 代理使用 JSON 来格式化其输出,旨在支持聊天模型。 create_json_chat_agent
ReAct LLM x x 推理和执行,推理后决定调用工具或者根据工具返回结果确定完成任务 create_react_agent
Self-ask with search LLM x x x 通过追问和中间答案,引导发现最终答案 create_self_ask_with_search_agent

Agent的基本使用

构建一个具有两种工具的代理:一种用于在线查找,另一种用于查找加载到索引中的特定数据。

准备操作

在LangChain中有一个内置的工具,可以方便地使用Tavily搜索引擎作为工具。

访问Tavily(用于在线搜索)注册账号并登录,获取API 密钥

设置OpenAI和TAVILY的API密钥

python复制代码import os
os.environ["OPENAI_BASE_URL"] = "https://xxx.com/v1"
os.environ["OPENAI_API_KEY"] = "sk-BGFnOL9Q4c99B378Bxxxxxxxxxxxxxxxx13bc437B82c2"
os.environ["TAVILY_API_KEY"] = 'tvly-Scx77cTxxxxxxxxxxxxx3rmxRIM8'

定义工具

首先需要创建想要使用的工具。这里使用两个工具:

复制代码Tavily(用于在线搜索)

创建的本地索引的检索器

1.Tavily在线搜索

python复制代码# 加载所需的库
from langchain_community.tools.tavily_search import TavilySearchResults

# 查询 Tavily 搜索 API 并返回 json 的工具
search = TavilySearchResults()
# 执行查询
res = search.invoke("目前市场上苹果手机15的平均售价是多少?")
print(res)

执行查询结果如下: 外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.创建检索器

根据上述查询结果中的某个URL中,获取一些数据创建一个检索器。

这里使用一个简单的本地向量库FAISS,使用FAISS的CPU版本,需要安装FAISS库:

python

复制代码pip install faiss-cpu
python复制代码from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值