C++23--位图和布隆过滤器

目录

 

1.位图

1.1位图的概念

1.2位图的实现

1.3位图的应用

2.布隆过滤器

2.1布隆过滤器的提出

2.2布隆过滤器概念

2.3布隆过滤器的插入

2.4布隆过滤器的查找

2.5布隆过滤器删除

2.6布隆过滤器的优点

2.7布隆过滤器缺陷


 

1.位图

1.1位图的概念

所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的。

1.2位图的实现

template<size_t N>
class bitset
{
public:
	bitset()
	{
		_a.resize(N / 32 + 1);
	}

	// x映射的那个标记成1
	void set(size_t x)
	{
		size_t i = x / 32;
		size_t j = x % 32;

		_a[i] |= (1 << j);
	}

	// x映射的那个标记成0
	void reset(size_t x)
	{
		size_t i = x / 32;
		size_t j = x % 32;

		_a[i] &= (~(1 << j));
	}

	bool test(size_t x)
	{
		size_t i = x / 32;
		size_t j = x % 32;

		return _a[i] & (1 << j);
	}
private:
	vector<int> _a;
};

1.3位图的应用

  1. 快速查找某个数据是否在一个集合中
  2. 排序+去重
  3. 求两个集合的交集、并集
  4. 操作系统种磁盘块标记

2.布隆过滤器

2.1布隆过滤器的提出

我们在使用新闻客户端看新闻时,它会给我们不停的推荐新的内容,它每次推荐时要去重,去掉那些已经看过的内容。问题来了,新闻客户端推荐系统如何实现推送去重的?用服务器记录了用户看过的所有历史记录,当推荐系统推荐新闻时会从每个用户的历史记录里进行筛选,过滤掉那些已经存在的记录。如何快速寻找呢?

  1. 用哈希表存储用户记录,缺点:浪费空间
  2. 用位图存储用户记录,缺点:位图一般只能处理整型,如果内容编号时字符串,就无法处理了。
  3. 将哈希与位图结合,即布隆过滤器

2.2布隆过滤器概念

布隆过滤器时由布隆在1970年提出的的一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询,可以用来告诉你“某样东西一定不存在或可能存在”,它时用多个哈希函数,将一个数据映射到位图结构中。此种方式不仅可以提升查询效率,也可以节省大量的内存空间

https://zhuanlan.zhihu.com/p/43263751/

2.3布隆过滤器的插入

向布隆过滤器中插入:“baidu”

#include<bitset>
#include<string>

struct BKDRHash
{
    size_t operator()(const string& str)
    {
        size_t hash = 0;
        for (auto ch : str)
        {
            hash = hash * 131 + ch;
        }

        //cout <<"BKDRHash:" << hash << endl;
        return hash;
    }
};

struct APHash
{
    size_t operator()(const string& str)
    {
        size_t hash = 0;
        for (size_t i = 0; i < str.size(); i++)
        {
            size_t ch = str[i];
            if ((i & 1) == 0)
            {
                hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
            }
            else
            {
                hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
            }
        }

        //cout << "APHash:" << hash << endl;
        return hash;
    }
};

struct DJBHash
{
    size_t operator()(const string& str)
    {
        size_t hash = 5381;
        for (auto ch : str)
        {
            hash += (hash << 5) + ch;
        }

        //cout << "DJBHash:" << hash << endl;
        return hash;
    }
};

template<size_t N,
    class K = string,
    class Hash1 = BKDRHash,
    class Hash2 = APHash,
    class Hash3 = DJBHash>
class BloomFilter
{
public:
    void Set(const K& key)
    {
        size_t hash1 = Hash1()(key) % N;
        _bs.set(hash1);

        size_t hash2 = Hash2()(key) % N;
        _bs.set(hash2);

        size_t hash3 = Hash3()(key) % N;
        _bs.set(hash3);

        /* cout << hash1 << endl;
         cout << hash2 << endl;
         cout << hash3 << endl << endl;*/
    }

    bool Test(const K& key)
    {
        size_t hash1 = Hash1()(key) % N;
        if (_bs.test(hash1) == false)
            return false;

        size_t hash2 = Hash2()(key) % N;
        if (_bs.test(hash2) == false)
            return false;

        size_t hash3 = Hash3()(key) % N;
        if (_bs.test(hash3) == false)
            return false;

        return true; // 
    }

private:
    bitset<N> _bs;
};

2.4布隆过滤器的查找

布隆过滤器的思想是将一个元素用多个哈希函数映射到一个位图中,因此被映射到的位置的比特位一定为1。所以可以按照以下方式进行查找:分别计算每个哈希值对应的比特位置存储的是否为零,只要有一个为零,代表该元素一定不在哈希中,否则可能在哈希表中

 

注意:布隆过滤器如果说某个元素不存在时,该元素一定不存在,如果该元素存在时,该元素可能存在,因此有些哈希函数存在一定的误判。

 

比如:在布隆过滤器中查找”alibaba“时,假设3个哈希函数计算的哈希值为:1、3、7,刚好和其它元素的比特位重叠,此时布隆过滤器告诉该元素存在,但实该元素是不存在的。

2.5布隆过滤器删除

布隆过滤器不能直接支持删除工作,因此在删除一个元素时,可能会影响其他元素。

 

比如:删除上图中”tencent“元素,如果直接将该元素所对应的二进制比特位变为0,”baidu“元素也被删除了,因此这两个元素在多个哈希函数计算出的比特位上刚好有重叠。

 

一种支持删除的方法:将布隆过滤器中的每个比特位扩展成一个小的计数器,插入元素时给k个计数器(k个哈希函数计算出的哈希地址)加1,删除元素时,给k个计数器减1,通过多占用几倍存储空间的代价来增加删除操作。

 

缺陷:

  1. 无法确定元素是否真正在布隆过滤器中
  2. 存在计数回绕

2.6布隆过滤器的优点

  1. 增加和查询元素的时间复杂度为:O(K),(K为哈希函数的个数,一般比较小),与数据量大小无关
  2. 哈希函数相互之间没有关系,方便硬件并行运算
  3. 布隆过滤器不需要存储元素本身,在某些对保密要求比较严格的场合有很大优势
  4. 在能够承受一定的误判时,布隆过滤器比其他数据结构有这很大的空间优势
  5. 数据量很大时,布隆过滤器可以表示全集,其他数据结构不能
  6. 使用同一组散列函数的布隆过滤器可以进行交、并、差运算

2.7布隆过滤器缺陷

  1. 有误判率,即存在假阳性(False Position),即不能准确判断元素是否在集合中(补救方法:再建立一个白名单,存储可能会误判的数据)
  2. 不能获取元素本身
  3. 一般情况下不能从布隆过滤器中删除元素
  4. 如果采用计数方式删除,可能会存在计数回绕问题

 

 

<think>好的,用户想了解C++位图布隆过滤器的相关知识及总结,我需要结合提供的引用资料来组织回答。首先,我应该先明确位图布隆过滤器的基本概念,然后讨论它们的实现应用,最后总结它们的优缺点应用场景。 首先看位图部分。根据引用[3],位图用于处理海量数据的存在性判断,比如40亿个整数去重。位图通过每个bit位表示一个数据是否存在,节省空间。需要提到位图的数据结构设计,比如用vector<bool>或直接操作比特位。实现部分可能需要给出C++的代码示例,比如设置某位为1,清除为0,检查存在性。应用方面包括快速查找、去重、排序等,引用[2][3]都有提到这些应用。 然后是布隆过滤器。根据引用[4],布隆过滤器是概率型数据结构,用于判断元素可能存在或一定不存在。它使用多个哈希函数映射到不同的位,引用[3][4]都提到了这一点。实现部分需要说明插入查找的过程,以及为什么不能删除,或者如何支持删除(可能需要引用计数)。应用方面,引用[5]提到了缓存穿透的解决方案,防止数据库被无效查询压垮。此外,分布式系统爬虫中的URL去重也是常见应用。 需要注意布隆过滤器的优缺点,比如空间效率高但存在误判率,无法删除元素等。引用[4][5]都有相关描述。可能需要比较位图布隆过滤器的适用场景,比如位图适合精确判断且数据范围小的情况,而布隆过滤器适合大数据量且允许一定误判的情况。 代码实现部分,位图可以用bitset或手动操作位,布隆过滤器则需要多个哈希函数位图的组合。需要确保示例代码正确,比如展示如何设置位,检查存在性,以及布隆过滤器的插入查询步骤。 最后总结部分,需要将位图布隆过滤器的核心点对比,强调它们在海量数据处理中的重要性,并结合引用中的内容,如引用[1]提到的结合位图布隆过滤器的方案,可能可以提到这种混合结构在优化空间查询速度上的优势。 现在需要检查是否有遗漏的引用内容,比如引用[1]提到结合位图布隆过滤器的优点,这可能是在实际应用中的优化策略,需要在总结部分提到。同时,用户要求生成相关问题,需要根据内容设计相关问题,比如应用场景、实现细节、优缺点比较等。 需要注意回答的结构,先讲位图,再讲布隆过滤器,每个部分包括概念、实现、应用,最后总结对比。确保引用标识正确添加,例如在提到布隆过滤器概念时加上[^4],在缓存穿透时引用[^5]等。</think>### C++位图布隆过滤器总结 #### 一、位图(Bitmap) **1. 概念与实现** 位图通过每个比特位(bit)表示一个数据的存在性(0/1),适用于海量数据的快速存在性判断[^3]。例如,40亿个整数(约16GB)用位图仅需约500MB内存。 **C++实现示例**: ```cpp class Bitmap { private: std::vector<uint32_t> bits; // 使用uint32_t数组存储位 public: Bitmap(size_t range) : bits((range >> 5) + 1, 0) {} // 计算需要多少32位块 void set(size_t x) { size_t index = x >> 5; // 确定数组下标 size_t offset = x % 32; // 确定比特位偏移 bits[index] |= (1 << offset); } bool test(size_t x) { size_t index = x >> 5; size_t offset = x % 32; return (bits[index] & (1 << offset)) != 0; } }; ``` **2. 应用场景** - **数据去重**:如统计40亿整数中不重复的数字。 - **快速查询**:判断IP是否在黑名单中。 - **排序**:对有限范围的整数进行非比较排序[^2]。 --- #### 二、布隆过滤器(Bloom Filter) **1. 概念与实现** 布隆过滤器通过$k$个哈希函数将元素映射到多个位,若所有对应位为1则“可能存在”,否则“一定不存在”[^4]。牺牲一定准确性换取极高的空间效率。 **C++实现核心逻辑**: ```cpp class BloomFilter { private: Bitmap bitmap; size_t k; // 哈希函数数量 public: BloomFilter(size_t size, size_t k) : bitmap(size), k(k) {} void add(const std::string& key) { for (size_t i = 0; i < k; ++i) { size_t hash = std::hash<std::string>{}(key + std::to_string(i)); bitmap.set(hash % bitmap.size()); } } bool contains(const std::string& key) { for (size_t i = 0; i < k; ++i) { size_t hash = std::hash<std::string>{}(key + std::to_string(i)); if (!bitmap.test(hash % bitmap.size())) return false; } return true; // 可能存在(有一定误判率) } }; ``` **2. 应用场景** - **缓存穿透防护**:拦截不存在的数据请求,保护数据库。 - **分布式系统**:减少节点间冗余数据传输。 - **爬虫URL去重**:避免重复抓取已处理的页面[^3]。 **3. 优缺点** - **优点**:空间效率高,查询时间$O(k)$,适合海量数据[^4]。 - **缺点**:误判率随元素增加而上升,且不支持删除(除非引入计数布隆过滤器)。 --- #### 三、对比与总结 | **特性** | **位图** | **布隆过滤器** | |------------------|------------------------------|------------------------------| | **数据范围** | 适用于整数且范围较小 | 支持任意数据类型 | | **误判率** | 无 | 有(可调整哈希函数数量优化) | | **删除支持** | 直接修改位即可 | 需额外结构(如计数位图) | | **典型场景** | 精确存在性判断 | 允许误判的存在性预筛 | **混合优化方案**:结合位图布隆过滤器,例如用位图处理高频数据,布隆过滤器处理低频数据,提升整体性能[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值