目录
布隆过滤器的提出
在注册账号设置昵称的时候,为了保证每个用户昵称的唯一性,系统必须检测你输入的昵称是否被使用过,这本质就是一个key的模型,我们只需要判断这个昵称被用过,还是没被用过。
方法一:用红黑树或哈希表将所有使用过的昵称存储起来,当需要判断一个昵称是否被用过时,直接判断该昵称是否在红黑树或哈希表中即可。但红黑树和哈希表最大的问题就是浪费空间,当昵称数量非常多的时候内存当中根本无法存储这些昵称
方法二:用位图将所有使用过的昵称存储起来,虽然位图只能存储整型数据,但我们可以通过一些哈希算法将字符串转换成整型,比如BKDR哈希算法。当需要判断一个昵称是否被用过时,直接判断位图中该昵称对应的比特位是否被设置即可。
位图虽然能够大大节省内存空间,但由于字符串的组合形式太多了,一个字符的取值有256种,而一个数字的取值只有10种,因此无论通过何种哈希算法将字符串转换成整型都不可避免会存在哈希冲突。
这里的哈希冲突就是不同的昵称最终被转换成了相同的整型,此时就可能会引发误判,即某个昵称明明没有被使用过,却被系统判定为已经使用过了,于是就出现了布隆过滤器。
布隆过滤器的概念
布隆过滤器是由布隆(Burton Howard Bloom)在1970年提出的一种紧凑型的、比较巧妙的概率型数据结构,特点是高效地插入和查询。
1.布隆过滤器其实就是位图的一个变形和延申,虽然无法避免存在哈希冲突,但我们可以想办法降低误判的概率。
2.当一个数据映射到位图中时,布隆过滤器会用多个哈希函数将其映射到多个比特位,当判断一个数据是否在位图当中时,需要分别根据这些哈希函数计算出对应的比特位,如果这些比特位都被设置为1则判定为该数据存在,否则则判定为该数据不存在。
3.布隆过滤器使用多个哈希函数进行映射,目的就在于降低哈希冲突的概率,一个哈希函数产生冲突的概率可能比较大,但多个哈希函数同时产生冲突的概率可就没那么大了。
假设布隆过滤器使用三个哈希函数进行映射,那么“张三”这个昵称被使用后位图中会有三个比特位会被置1,当有人要使用“李四”这个昵称时,就算前两个哈希函数计算出来的位置都产生了冲突,但由于第三个哈希函数计算出的比特位的值为0,此时系统就会判定“李四”这个昵称没有被使用过。
但随着位图中添加的数据不断增多,位图中1的个数也在不断增多,此时就会导致误判的概率增加。
比如“张三”和“李四”都添加到位图中后,当有人要使用“王五”这个昵称时,虽然“王五”计算出来的三个位置既不和“张三”完全一样,也不和“李四”完全一样,但“王五”计算出来的三个位置分别被“张三”和“李四”占用了,此时系统也会误判为“王五”这个昵称已经被使用过了。
布隆过滤器的基本原理和特点
-
数据结构:
- 位数组(Bit Array):通常是一个很长的二进制向量,初始时所有位都被置为0。
- 多个哈希函数:通常选择多个独立的哈希函数,每个哈希函数能够将任意元素映射到位数组中的一个位上。
-
插入元素:
- 当向布隆过滤器中插入一个元素时,使用多个哈希函数计算元素的哈希值,并将对应的位数组中的位置置为1。
-
查询元素:
- 当查询一个元素是否在布隆过滤器中时,同样使用多个哈希函数计算元素的哈希值,并检查对应的位数组中的位置是否都为1。
- 如果所有对应的位都为1,则说明该元素可能在集合中;如果有任何一个位为0,则该元素肯定不在集合中。
-
特点: