Yolo系列——yolo v3

一、概述

YOLOv3(You Only Look Once version 3)是由Joseph Redmon等人在2018年推出的一款目标检测算法。作为YOLO系列的第三代版本,YOLOv3在保持实时性的基础上,进一步提高了检测准确性,特别是在小物体检测方面表现出色。它采用单阶段检测方法,将目标检测问题转化为回归问题,使用单个神经网络直接从完整图像预测边界框和类别概率,实现了端到端的快速目标检测。

二、网络结构

YOLOv3的网络结构主要包括骨干网络、特征金字塔网络(FPN)以及预测层。
在这里插入图片描述

  • 骨干网络:YOLOv3采用Darknet-53作为特征提取网络。Darknet-53是一个基于ResNet残差网络思想的深度学习模型,包含53个卷积层,每个卷积层后跟随批量归一化层和Leaky
    ReLU激活函数。这种结构使得网络在提取特征时更加高效,同时避免了过拟合的问题。Darknet-53去除了池化层,使用步长为2的卷积层进行特征图的降采样,有效避免了低层级特征的损失。
  • 特征金字塔网络(FPN):YOLOv3引入了FPN机制,以解决多尺度检测的问题。FPN在Darknet-53的输出上添加了几个额外的卷积层,形成了三个不同尺度的特征图。这使得网络能够更好地检测不同大小的目标。通过融合深层和浅层的特征,YOLOv3能够显著提高对小目标的检测能力。

三、模型改进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值