Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and
target 8
,
A solution set is:
[1,
7]
[1,
2, 5]
[2,
6]
[1,
1, 6]
有点像01背包, 稍微改动了一下,先预处理去重,统计每个元素的数, 深度遍历的时候 约束条件添加 不能超过Num[i]
class Solution {
private:
vector<vector <int> > ret;
vector <int> count;
vector <int> num;
public:
void help(int current_index, int max_index, int target , vector<int> & candidates){
if(target <0)
return ;
if(current_index == max_index)
{
if(target == 0)
{
vector<int> tmp;
for(int i = 0 ; i < max_index; i++)
for(int j = 0 ; j < count[i]; j++)
tmp.push_back(candidates[i]);
ret.push_back(tmp);
return ;
}
return ;
}
for(int i = 0; i <= num[current_index] && i <= target/candidates[current_index]; i++)
{
count[current_index] = i;
help(current_index+1,max_index, target - i*candidates[current_index],candidates);
}
}
vector<vector<int> > combinationSum2(vector<int> &candidates, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
ret.clear();
vector <int> can;
int pre = 0;
if(candidates.size()==0)
return ret;
sort (candidates.begin(),candidates.end());
num.clear();
num.resize(candidates.size());
int j = -1;
for(int i = 0 ; i < candidates.size(); i++)
{
if(candidates[i]==pre)
{
num[j]++;
}else{
j++;
can.push_back(candidates[i]);
pre =candidates[i];
num[j] = 1;
}
}
count.clear();
count.resize(candidates.size());
help(0,can.size(), target,can);
return ret;
}
};