Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
分析:
这跟Conbination Sum 不同的地方有两处:
1,在DFS递归的时候,因为i位置元素只能用一次,所以递归要 i+1;
2,在判断continue的时候,是 i > start && num[i] == num[i-1],这个保证 num[start] == num[start-1]的时候也是有效地(即例子中 1,1,6)的情况。
public class Solution {
public List<List<Integer>> combinationSum2(int[] num, int target) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
if(num==null || num.length==0)
return res;
Arrays.sort(num);
dfs(num, 0, target, new ArrayList<Integer>(), res);
return res;
}
public void dfs(int[] num, int start, int target, List<Integer> item, List<List<Integer>> res){
if(target<=0){
if(target==0)
res.add(new ArrayList<Integer>(item));
return;
}
for(int i=start; i<num.length; i++){
//i>start保证num[start]==num[start-1]的时候也可以处理到
if(i>start && num[i]==num[i-1]) continue;
item.add(num[i]);
//每次i+1,保证i位置只使用一次
dfs(num, i+1, target-num[i], item, res);
item.remove(item.size()-1);
}
}
}