Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and
target 7
,
A solution set is:
[7]
[2,
2, 3]
先想到的是背包...不过要得到所有结果,而不是结果数量,就用了DFS
写了一下,又参考了一下,有两种思路, 一种是统计各个数的需求个数,另一个是累加达到target 基本一致吧
class Solution {
private:
vector<vector <int> > ret;
vector <int> count;
public:
void help(int current_index, int max_index, int target , vector<int> & candidates){
if(target <0)
return ;
if(current_index == max_index)
{
if(target == 0)
{
vector<int> tmp;
for(int i = 0 ; i < max_index; i++)
for(int j = 0 ; j < count[i]; j++)
tmp.push_back(candidates[i]);
ret.push_back(tmp);
return ;
}
return ;
}
for(int i = 0; i <= target/candidates[current_index] ; i++)
{
count[current_index] = i;
help(current_index+1,max_index, target - i*candidates[current_index],candidates);
}
}
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
ret.clear();
if(candidates.size()==0)
return ret;
sort (candidates.begin(),candidates.end());
count.clear();
count.resize(candidates.size());
help(0,candidates.size(), target,candidates);
return ret;
}
};