Description
for (variable = A; variable != B; variable += C) statement;
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2 k) modulo 2 k.
Input
The input is finished by a line containing four zeros.
Output
Sample Input
3 3 2 16 3 7 2 16 7 3 2 16 3 4 2 16 0 0 0 0
Sample Output
0 2 32766 FOREVER
.
.
.
题意:for(i=A;i!=B;i+=C){i%(2^k)};问你循环执行几次?
思路:先假设等式成立:(A+x*C)%(2^k)=B
变形(2^k)*y+B=A+C*x ==> C*x+(-(2^k)*y)=B-A;
ax+by=c
所以现在你知道怎么做了吧。哈哈!
转载请注明出处:http://www.cnblogs.com/yuyixingkong/
题目链接:http://poj.org/problem?id=2115
#include<stdio.h>
#define LL unsigned long long
void exgcd(LL a,LL b,LL& d,LL& x,LL& y)
{
if(!b){d=a;x=1;y=0;}
else
{
exgcd(b,a%b,d,y,x);
y-=x*(a/b);
}
}
int main()
{
LL A,B,C,k;
while(scanf("%llu%llu%llu%llu",&A,&B,&C,&k),(A+B+C+k))
{
LL a,b,c,d,x,y,dm;
c=B-A;
if(c==0){printf("0\n");continue;}
a=C;
b=(LL)1<<k;
exgcd(a,b,d,x,y);
if(c%d){ printf("FOREVER\n");continue;}
dm=b/d;
x=(((x*c/d)%dm)+dm)%dm;
printf("%llu\n",x);
}
return 0;
}