Given a linked list, return the node where the cycle begins. If there is no cycle, return null.
Note: Do not modify the linked list.
Follow up:
Can you solve it without using extra space?
解题思路:
当 fast 与 slow 相遇时,slow 肯定没有遍历完链表,而 fast 已经在环内循环了 n 圈 (1 ≤ n)。假 设 slow 走了 s 步,则 fast 走了 2s 步(fast 步数还等于 s 加上在环上多转的 n 圈),设环长为 r,则:
2s = s+nr s = nr
设整个链表长 L,环入口点与相遇点距离为 a,起点到环入口点的距离为 x,则 x+a = nr=(n–1)r+r=(n−1)r+L−x
x = (n−1)r+(L–x–a)
L–x–a 为相遇点到环入口点的距离,由此可知,从链表头到环入口点等于 n − 1 圈内环 + 相遇 点到环入口点,于是我们可以从 head 开始另设一个指针 slow2,两个慢指针每次前进一步,它俩 一定会在环入口点相遇。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode *fast = head, *slow = head;
while (fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
if (slow == fast) {
ListNode *slow2 = head;
while (slow != slow2) {
slow = slow->next;
slow2 = slow2->next;
}
return slow2;
}
}
return NULL;
}
};