CF 496E(Distributing Parts-序列混合贪心+set)

本文探讨了在音乐剧中合理分配角色给演员的算法,包括演员的音域限制、角色的音域范围以及合同规定的角色数量。通过输入演员音域、角色音域范围和合同条件,算法能够快速确定符合所有限制的分配方案。如果存在解决方案,则输出演员编号对应的角色,否则输出'NO'。算法的时间复杂度为O((n+m)log(n+m))。

E. Distributing Parts
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You are an assistant director in a new musical play. The play consists of n musical parts, each part must be performed by exactly one actor. After the casting the director chose m actors who can take part in the play. Your task is to assign the parts to actors. However, there are several limitations.

First, each actor has a certain voice range and there are some parts that he cannot sing. Formally, there are two integers for each actor,ci and di (ci ≤ di) — the pitch of the lowest and the highest note that the actor can sing. There also are two integers for each part — ajand bj (aj ≤ bj) — the pitch of the lowest and the highest notes that are present in the part. The i-th actor can perform the j-th part if and only if ci ≤ aj ≤ bj ≤ di, i.e. each note of the part is in the actor's voice range.

According to the contract, the i-th actor can perform at most ki parts. Besides, you are allowed not to give any part to some actors (then they take part in crowd scenes).

The rehearsal starts in two hours and you need to do the assignment quickly!

Input

The first line contains a single integer n — the number of parts in the play (1 ≤ n ≤ 105).

Next n lines contain two space-separated integers each, aj and bj — the range of notes for the j-th part (1 ≤ aj ≤ bj ≤ 109).

The next line contains a single integer m — the number of actors (1 ≤ m ≤ 105).

Next m lines contain three space-separated integers each, cidi and ki — the range of the i-th actor and the number of parts that he can perform (1 ≤ ci ≤ di ≤ 1091 ≤ ki ≤ 109).

Output

If there is an assignment that meets all the criteria aboce, print a single word "YES" (without the quotes) in the first line.

In the next line print n space-separated integers. The i-th integer should be the number of the actor who should perform the i-th part. If there are multiple correct assignments, print any of them.

If there is no correct assignment, print a single word "NO" (without the quotes).

Sample test(s)
input
3
1 3
2 4
3 5
2
1 4 2
2 5 1
output
YES
1 1 2
input
3
1 3
2 4
3 5
2
1 3 2
2 5 1
output
NO

把plays和actors的区间混合并按照l排序,相同则actors<plays

然后这段序列中已维护actors.l≤plays.l,actors.r>plays.r可以用set找

复杂度O((n+m)log(n+m))



#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<set>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])  
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (100000+10)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
int n,m;
struct Pair
{
public:
	int l,r,i;
	bool flag;
	friend bool operator<(const Pair a,const Pair b){
		return a.r<b.r;
	}
}a[MAXN*2];
int k[MAXN];
int cmp(const void* a,const void *b)
{
	Pair a2=*(Pair*)a;
	Pair b2=*(Pair*)b;
	if (a2.l^b2.l) return a2.l<b2.l?-1:1;
	return a2.flag<b2.flag?-1:a2.flag==b2.flag?0:1;
}
multiset<Pair> S;
multiset<Pair>::iterator it;
int ans[MAXN];
int main()
{
//	freopen("CF496E.in","r",stdin);
	scanf("%d",&n);
	For(i,n) scanf("%d%d",&a[i].l,&a[i].r),a[i].i=i,a[i].flag=1;
	scanf("%d",&m);
	Fork(i,n+1,n+m) scanf("%d%d%d",&a[i].l,&a[i].r,&k[i-n]),a[i].i=i-n,a[i].flag=0;
	
	qsort(a+1,n+m,sizeof(a[1]),cmp);
	
	S.clear();
	For(i,n+m)
	{
		if (!a[i].flag) S.insert(a[i]);
		else
		{
			it=S.lower_bound(a[i]);
			if (it!=S.end())
			{
				ans[a[i].i]=it->i;
				if (--k[it->i]==0) S.erase(it);
			}
			else 
			{
				cout<<"NO\n";
				return 0;
			}
			
		} 
	}
	
	cout<<"YES\n";
	printf("%d",ans[1]);Fork(i,2,n) printf(" %d",ans[i]);printf("\n");
	
	return 0;
}



文件1:第一行 {"index": 0, "prompt": {"data": ["Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}."], "system_prompt": null, "raw_input": {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"}}, "tags": ["en"], "categories": ["DeepSeekDistill", "Math"], "task_type": "math", "weight": 0.3333333333333333, "dataset_name": "math_500", "subset_name": "default"} 文件2:第281行 {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"} 写一个脚本依据problem字段的值查找两个文件中的所有问题是否一致,对比两个文件中的problem是否相同,两个文件中的该部分内容并不在同一行,如果不一致输出不一样的内容并将打印内容输出为一个文件
08-15
{ "id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [ { "finish_reason": "stop", "index": 0, "message": { "content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven't made a mistake. Let me pick specific primes for $ a $ and $ b $. Let's take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That's 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there's any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2×2×2=8 divisors.\n\nBut let me check if there's a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can't be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that's correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that's how it's written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": "" } } ], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": { "completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695 }, "model_spec": { "api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY" }, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "origin_prompt": { "data": [ "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}." ], "system_prompt": null, "raw_input": { "problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json" }, "index": 0 } } 如何判断该题是否回答正确,提取哪个参数核对
08-16
json格式: {"id": "cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07", "choices": [{"finish_reason": "stop", "index": 0, "message": {"content": "<think>\nOkay, so I need to figure out how many whole-number divisors there are for the integer given by the expression $ a(2a + b) - 2a^2 + ab $, where $ a $ and $ b $ are different prime numbers greater than 2. Let me start by simplifying the expression step by step.\n\nFirst, let me write down the expression again to make sure I have it right: $ a(2a + b) - 2a^2 + ab $. Let me expand the first term, which is $ a(2a + b) $. If I distribute the $ a $, that becomes $ 2a^2 + ab $. So substituting that back into the original expression, we have:\n\n$ 2a^2 + ab - 2a^2 + ab $.\n\nNow let me combine like terms. The $ 2a^2 $ and $ -2a^2 $ cancel each other out, right? So that leaves me with $ ab + ab $, which is $ 2ab $. So the entire expression simplifies to $ 2ab $. \n\nWait, so the problem is asking for the number of whole-number divisors of $ 2ab $, where $ a $ and $ b $ are different primes greater than 2. Let me confirm that I simplified correctly. Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nExpanding $ a(2a + b) $: $ 2a^2 + ab $. Then subtract $ 2a^2 $, so $ 2a^2 + ab - 2a^2 = ab $. Then add $ ab $, so $ ab + ab = 2ab $. Yes, that seems right. So the expression simplifies to $ 2ab $.\n\nAlright, so now I need to find the number of positive divisors of $ 2ab $. Since $ a $ and $ b $ are primes greater than 2, they are both odd primes. Let me recall that the number of divisors of a number is found by taking its prime factorization, adding one to each of the exponents, and multiplying those together.\n\nSo first, let me write the prime factorization of $ 2ab $. Since 2 is a prime number, and $ a $ and $ b $ are different primes, all three primes are distinct. Therefore, the prime factors of $ 2ab $ are 2, $ a $, and $ b $. Each of these primes has an exponent of 1 in the factorization. So the prime factorization is $ 2^1 \\times a^1 \\times b^1 $.\n\nTo find the number of divisors, I take each exponent (which are all 1s), add 1 to them, and multiply. That would be $ (1 + 1)(1 + 1)(1 + 1) = 2 \\times 2 \\times 2 = 8 $. Therefore, there are 8 positive divisors.\n\nBut let me verify this with an example to make sure I haven't made a mistake. Let me pick specific primes for $ a $ and $ b $. Let's take $ a = 3 $ and $ b = 5 $, which are both primes greater than 2 and different.\n\nCalculating $ 2ab $: $ 2 \\times 3 \\times 5 = 30 $. Now, the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. That's 8 divisors. Yep, that matches the calculation. Let me try another example to be safe. Let me take $ a = 5 $, $ b = 7 $. Then $ 2ab = 2 \\times 5 \\times 7 = 70 $. Divisors of 70: 1, 2, 5, 7, 10, 14, 35, 70. Again, 8 divisors. Okay, so that seems consistent.\n\nBut let me think again if there's any possibility that 2 could be equal to $ a $ or $ b $. However, the problem states that $ a $ and $ b $ are primes greater than 2, so they are odd primes. Therefore, 2 is not among them. Therefore, 2, $ a $, and $ b $ are distinct primes. Therefore, the prime factorization is indeed three distinct primes each to the first power, leading to 2×2×2=8 divisors.\n\nBut let me check if there's a case where maybe $ a $ or $ b $ is 2. But the problem says they are greater than 2, so they can't be. Therefore, my reasoning holds.\n\nTherefore, the number of whole-number divisors is 8. Therefore, the answer is 8, which in boxed form is \\boxed{8}.\n\nWait, but let me just check once more. Suppose someone might think that maybe the original expression simplifies differently? Let me check again:\n\nOriginal expression: $ a(2a + b) - 2a^2 + ab $.\n\nFirst term: $ a(2a + b) = 2a^2 + ab $.\n\nSubtracting $ 2a^2 $: $ 2a^2 + ab - 2a^2 = ab $.\n\nAdding $ ab $: $ ab + ab = 2ab $. Yes, that's correct. So the expression simplifies to 2ab. So no issues there.\n\nAlternatively, maybe someone might misread the original problem? Let me check again. The problem says: \"the integer $ a(2a + b) - 2a^2 + ab $\". So yes, that's how it's written. So the steps are correct.\n\nTherefore, I think my answer is correct. The number of divisors is 8.\n\n**Final Answer**\n\\boxed{8}\n</think>\n\nWe are given an expression involving two distinct prime numbers $ a $ and $ b $, both greater than 2, and asked to find the number of whole-number divisors of the integer:\n\n$$\na(2a + b) - 2a^2 + ab\n$$\n\n---\n\n### Step 1: Simplify the Expression\n\nStart by expanding the first term:\n\n$$\na(2a + b) = 2a^2 + ab\n$$\n\nNow substitute this back into the full expression:\n\n$$\n2a^2 + ab - 2a^2 + ab\n$$\n\nSimplify by combining like terms:\n\n- $ 2a^2 - 2a^2 = 0 $\n- $ ab + ab = 2ab $\n\nSo the entire expression simplifies to:\n\n$$\n2ab\n$$\n\n---\n\n### Step 2: Prime Factorization of $ 2ab $\n\nSince $ a $ and $ b $ are distinct prime numbers greater than 2, and 2 is also a prime, the expression $ 2ab $ is the product of three **distinct** primes:\n\n$$\n2ab = 2^1 \\cdot a^1 \\cdot b^1\n$$\n\n---\n\n### Step 3: Count the Number of Divisors\n\nThe number of positive divisors of a number is determined by taking the product of one more than each exponent in its prime factorization.\n\nHere, the exponents are all 1:\n\n$$\n(1 + 1)(1 + 1)(1 + 1) = 2 \\cdot 2 \\cdot 2 = 8\n$$\n\n---\n\n### Final Answer\n\n$$\n\\boxed{8}\n$$", "role": "assistant", "reasoning_content": ""}, "review": {"gold": "8", "pred": "8", "result": true}}], "created": 1755157209, "model": "Qwen3-32B", "object": "chat.completion", "usage": {"completion_tokens": 1627, "prompt_tokens": 68, "total_tokens": 1695}, "model_spec": {"api_url": "http://0.0.0.0:9009/v1/chat/completions", "model_id": "Qwen3-32B", "api_key": "EMPTY"}, "answer_id": "answer-1a07ae97260436f698e63d4620d7cff0", "subset_name": "default", "raw_input": {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"}, "origin_prompt": {"data": ["Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?\nPlease reason step by step, and put your final answer within \\boxed{}."], "system_prompt": null, "raw_input": {"problem": "Suppose $a$ and $b$ are different prime numbers greater than 2. How many whole-number divisors are there for the integer $a(2a+b)-2a^{2}+ab$?", "solution": "Distributing and combining like terms, we have $a(2a+b)-2a^2+ab=2a^2+ab-2a^2+ab=2ab$. Now $a$ and $b$ are different prime numbers greater than 2, so $2ab=2^1\\cdot a^1\\cdot b^1$ has $(1+1)(1+1)(1+1)=\\boxed{8}$ divisors.", "answer": "8", "subject": "Number Theory", "level": 4, "unique_id": "test/number_theory/1287.json"}, "index": 0}, "reviewed": true, "review_id": "review-307a3dc16716316d92e62e1f3ae09703", "reviewer_spec": {"metric": ["AveragePass@1"], "reviewer": ["Evaluator"], "revision": ["default"]}, "review_time": 1755194244.6042051} 生成csv: 题目ID ID类型 原始答案(raw_input) 原始答案(review.gold) 原始答案一致性 模型答案(review.pred) 模型答案(boxed) 模型答案一致性 审核结果(review.result) 完成原因 原因分析 模型输出摘要 cmpl-e759f3d8-78e1-11f0-b2b4-1a85109d8f07 UUID 8 N/A N/A 8 8 是 N/A stop 正常完成 <think> Okay, so I need to figure out how many whole-number divisors there are for the integer given... 优化脚本
最新发布
08-16
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值