Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
map<int,int> sum,tempSum;
for(int i=0;i<triangle.size();++i){
for(int j=0;j<triangle[i].size();++j){
if(i==0){
sum[j]=triangle[i][j];
}else{
if(j==0){
sum[j]=tempSum[j]+triangle[i][j];
}else if(j==triangle[i].size()-1){
sum[j]=tempSum[j-1]+triangle[i][j];
}else{
int a=tempSum[j-1]+triangle[i][j];
int b=tempSum[j]+triangle[i][j];
sum[j]=min(a,b);
}
}
}
tempSum=sum;
}
int min =(unsigned int)(-1) >>1;
for(map<int,int>::iterator iter=sum.begin();iter!=sum.end();++iter){
if(iter->second < min)
min=iter->second;
}
return min;
}
};
动态规划